The generative potential of kerogenous shale sequences in the Caucasus Maykopian series, the southern part of European Russia, is evaluated. The Khadum and Batalpashin sediments in the Eastern and Central Fore-Caucasus include three types of kerogen: I, II and III. The Khadum sediments are dominated by a more “noble” type II kerogen, mixed humic-sapropelic organic matter (OM). The Maykopian series may be attributed to the category of “rich” and “very rich” (“outstanding”) oil source rocks. The maturity extent of the subject sediments within the region varies between the grades of protokatagenesis (maximum pyrolysis temperature (Tmax) = 390 °С) and MC4 (Tmax = 471 °С). Based on the pyrolytic studies, the Khadum and Batalpashin sediments are distinct from other pelitic rocks in rather high generative potential values. The average value of the total generative potential (S1 + S2) in the studied samples from the Khadum and Batalpashin Formations is 4.83 mg HC/g rock. The quantitative estimate of the hydrocarbon generative potential of the Khadum and Batalpashin sediments in this region was conducted for the first time. The total initial generative hydrocarbon potential of the sediments is 133.4 BT, being 92.7 BT for the Khadum Formation, and 40.7 BT for the Batalpashin Formation.
1. Morariu D., Averyanova, O. Yu. Some aspects of oil shale – finding kerogen to generate oil (Nekotorye aspekty neftenosnosti slantsev: ponyatiynaya baza, vozmozhnosti otsenki i poisk tekhnologiy izvlecheniya nefti). Oil and Gas Geology. Theory and Practice, 2013, 8(1). http://www.ngtp.ru/rub/9/3_2013.pdf (in Russian).
2. Neruchev, S. G., Vassoevich, N. B., Lopatin, N. V. Extent of katagenesis during oil and gas formation. (O shkale katageneza v svyazi s neftegazoobrazovaniem). 25th International Geological Congress. Oil Shales, 1976, 46–72 (in Russian).
3. Pelet, R. Evaluation quantitative des produits formés lors de l’évolution géochimique de la matière organique. Rev. I. Fr. Petrol., 1985, 40(5), 551–562 (in French).
https://doi.org/10.2516/ogst:1985034
4. Prishchepa, O. M., Aver'yanova, O. Yu., Il'inskij, A. A., Morariu, D. Oil and Gas in Low-Permeability Shale Sequences – Source for Hydrocarbons for Russia (Neft' i gaz nizkopronitsaemykh slantsevykh tolshch – rezerv syr'evoj bazy uglevodorodov Rossii). Proceedings of the All-Union Oil Exploration Institute (VNIGRI), 2014, 323 pp (in Russian).
5. Guliev, I. S., Kerimov, V. Yu., Mustaev, R. N. Fundamental challenges of the location of oil and gas in the South Caspian Basin. Doklady Earth Sciences, 2016, 471(1), 1109–1112.
https://doi.org/10.1134/S1028334X1611009X
6. Kerimov, V. Yu, Rachinsky, M. Z. Geofluid dynamic concept of hydrocarbon accumulation in natural reservoirs. Doklady Earth Sciences, 2016, 471(1), 1123–1125.
https://doi.org/10.1134/S1028334X16110155
7. Kerimov, V. Yu., Gorbunov, A. A., Lavrenova, E. A., Osipov, A. V. Models of hydrocarbon systems in the Russian Platform – Ural junction zone. Lithology and Mineral Resources, 2015, 50(5), 394–406.
https://doi.org/10.1134/S002449021505003X
8. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer, 1984, 699 pp.
https://doi.org/10.1007/978-3-642-87813-8
9. Peters, K. E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 1986, 70(3), 318–329.
10. Espitalié, J., Durand, B., Roussel, J. C. 1. Etude de la materie organique insoluble (kerogene) des argiles du Toarcian du basin de Paris. 2. Etude en spectrometrie infrarouge, en analyse thermique differentielle et en analyse thermogravimetrique. Rev. I. Fr. Petrol., 1973, 28(1), 37–66 (in French).
11. Akramhodzhaev, A. M., Vassoevich, N. B. Terrigenous oil source rocks (Sovremennoe sostoyanie problemy neftematerinskikh otlozhenij terrigennogo tipa). The State Of The Art and Problems of Soviet Geology, 1970 (in Russian).
12. Kerimov, V. Yu., Rachinsky, M. Z., Mustaev, R. N., Osipov, A. V. Groundwater Dynamics Forecasting Criteria of Oil and Gas Occurrences in Alpine Mobile Belt Basins. Doklady Earth Sciences, 2017, 476(1), 1066–1068.
https://doi.org/10.1134/S1028334X17090136
13. Kerimov, V. Yu., Lapidus, A., L., Yandarbiev, N. Sh., Movzumzade, E. M., Mustaev, R. N. Physicochemical properties of shale strata in the Maikop series of Ciscaucasia. Solid Fuel Chemistry, 2017, 51(2), 122–130.
https://doi.org/10.3103/S0361521917020057
14. Kerimov, V. Yu., Mustaev, R. N., Dmitrievsky, S. S., Zaitsev, V. A. Evaluation of secondary filtration parameters of low-permeability shale strata of the Maikop series of Central and Eastern Ciscaucasia by the results of geomechanics modeling. Oil Industry Journal, 2016, 9, 18–21 (in Russian).
15. Kerimov, V. Yu., Mustaev, R. N., Serikova, U. S., Lavrenova, E. A., Kruglyakova, M. V. Hydrocarbon generation-accumulative system on the territory of Crimea Peninsula and adjacent Azov and Black Seas. Oil Industry Journal, 2015, 3, 56–60 (in Russian).
16. Kerimov, V. Yu., Shilov, G. Ya., Mustaev, R. N., Dmitrievskiy, S. S. Thermobaric conditions of hydrocarbons accumulations formation in the low-permeability oil reservoirs of Khadum suite of the Pre-Caucasus. Oil Industry Journal, 2016, 2, 8–11 (in Russian).
17. Kerimov, V. Yu., Mustaev, R. N., Bondarev, A. V. Evaluation of the organic carbon content in the low-permeability shale formations (as in the case of the Khadum suite in Ciscaucasia Region). Orient. J. Chem., 2016, 32(6), 3235–3241.
https://doi.org/10.13005/ojc/320648
18. Rachinsky, M. Z., Kerimov, V. Y. Fluid Dynamics of Oil and Gas Reservoirs. Scrivener Publishing, Wiley, MA, USA, 2015.
https://doi.org/10.1002/9781118999004
19. Daly, A. R., Edman, J. D. Loss of Organic Carbon from Source Rocks during Thermal Maturation, 1987, 546 pp.
20. Urov, K., Sumberg, A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops. Monograph. Oil Shale, 1999, 16(3), 1–64.
21. Reinsalu, E., Aarna, I. About technical terms of oil shale and shale oil. Oil Shale, 2015, 32(4), 291–292.
https://doi.org/10.3176/oil.2015.4.01