ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
CATALYTIC EFFECTS OF FE- AND CA-BASED ADDITIVES ON GAS EVOLUTION DURING PYROLYSIS OF DACHENGZI OIL SHALE OF CHINA; pp. 39–55
PDF | https//doi.org/10.3176/oil.2018.1.03

Authors
SHA WANG, LIZHI SONG, Xiumin Jiang
Abstract

The pyrolysis of Dachengzi oil shale (OS), Huadian City, China, was carried out in a stainless-steel cylindrical retort at 520 °C both in the absence and presence of catalyst under argon atmosphere to evaluate the catalytic effects of Fe2O3 and CaCO3 additives on the products yield and characteristics of non-condensable gases. The results showed that the catalyst significantly affected the reactivity of OS kerogen pyrolysis. The shale oil yield increased after adding the catalyst, especially Fe2O3, but the shale char yield decreased in the presence of the catalyst. The non-condensable gases yield rose in the CaCO3-catalysed pyrolysis and declined upon the Fe2O3-catalysed process, indicating that CaCO3 had a more pronounced catalytic effect on the secondary reactions of oil vapors. In addition, the gaseous products obtained both with and without the catalyst had a higher volume content of CO2, CH4 and H2, and a lower volume content of CO and C2–C4 hydrocarbons. The peak concentrations of CO2 and H2 increased in the presence of the catalyst, especially Fe2O3, while that of CO enhanced with addition of CaCO3 as a catalyst. H2 was generated at higher temperature compared to CO2 and CO. Furthermore, Fe2O3 and CaCO3 exhibited different effects on the evolution of C1–C4 hydrocarbons. COS and H2S evolved almost simultaneously, the amount of H2S released being higher than that of COS. The peak concentrations of the said gases decreased with adding the catalyst, especially Fe2O3. The non-condensable gases produced both before and after catalysis mainly consisted of CO2 and CH4, and some minor gases, in terms of mass distribution. The mass contents of ethane, butane, CO2 and H2 increased after the use of the catalyst, while those of butane, H2S and COS decreased. Moreover, adding Fe2O3 and CaCO3 resulted in the decline in the ethene/ethane and propene/propane ratios, respectively, suggesting that different catalysts possibly led to different changes in the physical structure of oil shale and then caused the secondary reactions of pyrolysis products to proceed to different extents. CaCO3 was more efficient than Fe2O3 in producing non-condensable gases of high heating value.

References

 1.       Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol., 2014, 121, 9–15.
https://doi.org/10.1016/j.fuproc.2014.01.005

2.       Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting tem­perature on shale oil yield and properties. Fuel, 2012, 95, 131–135.
https://doi.org/10.1016/j.fuel.2011.11.029

3.       Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 2012, 94, 333–341.
https://doi.org/10.1016/j.fuel.2011.09.018

4.       Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel, 1999, 78(6), 653–662.
https://doi.org/10.1016/S0016-2361(98)00190-2

5.       Al-Harahsheh, A., Al-Ayed, O., Al-Harahsheh, M., Abu-El-Halawah, R. A. Heat­ing rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrol., 2010, 89(2), 239–243.
https://doi.org/10.1016/j.jaap.2010.08.009

6.       Nazzal, J. M. The influence of grain size on the products yield and shale oil composition from the Pyrolysis of Sultani oil shale. Energ. Convers. Manage., 2008, 49(11), 3278–3286.
https://doi.org/10.1016/j.enconman.2008.03.028

7.       Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1: Nonisothermal rate measurements. Fuel, 1980, 59(10), 718–726.
https://doi.org/10.1016/0016-2361(80)90027-7

8.       Campbell, J. H., Gallegos, G., Gregg, M. Gas evolution during oil shale pyro­lysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10), 727–732.
https://doi.org/10.1016/0016-2361(80)90028-9

9.       Huss, E. B., Burnham, A. K. Gas evolution during pyrolysis of various Colorado oil shales. Fuel, 1982, 61(12), 1188–1196.
https://doi.org/10.1016/0016-2361(82)90018-7

10.    Marshall, C. P., Kannangara, G. S. K., Wilson, M. A., Guerbois, J.-P., Hartung-Kagi, B., Hart, G. Potential of thermogravimetric analysis coupled with mass spectrometry for the evaluation of kerogen in source rocks. Chem. Geol., 2002, 184(3–4), 185–194.
https://doi.org/10.1016/S0009-2541(01)00362-X

11.    Charlesworth, J. M. Oil shale pyrolysis. 2. Kinetics and mechanism of hydro­carbon evolution. Ind. Eng. Chem. Proc. Des. Dev., 1985, 24(4), 1125–1132.
https://doi.org/10.1021/i200031a038

12.    Wong, C. M., Crawford, R. W., Burnham, A. K. Determination of sulfur-con­tain­ing gases from oil shale pyrolysis by triple quadrupole mass spectrometry. Anal. Chem., 1984, 56(3), 390–395.
https://doi.org/10.1021/ac00267a021

13.    Reynolds, J. G., Crawford, R. W., Burnham, A. K. Analysis of oil shale and petroleum source rock pyrolysis by triple quadrupole mass spectrometry: com­parisons of gas evolution at the heating rate of 10 oC/min. Energ. Fuel., 1991, 5(3), 507–523.
https://doi.org/10.1021/ef00027a025

14.    Abbasi-Atibeh, E., Yozgatligil, A. A study on the effects of catalysts on pyro­lysis and combustion characteristics of Turkish lignite in oxy-fuel conditions. Fuel, 2014, 115, 841–849.
https://doi.org/10.1016/j.fuel.2013.01.073

15.    Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel, 1998, 77(12), 1303–1309.
https://doi.org/10.1016/S0016-2361(98)00045-3

16.    Sadiki, A., Kaminsky, W., Halim, H., Bekri, O. Fluidised bed pyrolysis of Moroccan oil shales using the hamburg pyrolysis process. J. Anal. Appl. Pyrol., 2003, 70(2), 427–435.
https://doi.org/10.1016/S0165-2370(03)00002-0

17.    Floess, J. K., Plawsky, J., Longwell, J. P., Peters, W. A. Effects of calcined dolomite on the fluidized bed pyrolysis of a Colorado oil shale and a Texas lignite. Ind. Eng. Chem. Proc. Des. Dev., 1985, 24(3), 730–737.
https://doi.org/10.1021/i200030a035

18.    Ellig, D. L., Lai, C. K., Mead, D. W., Longwell, J. P., Peters, W. A. Pyrolysis of volatile aromatic hydrocarbons and n-heptane over calcium oxide and quartz. Ind. Eng. Chem. Proc. Des. Dev., 1985, 24(4), 1080–1087.
https://doi.org/10.1021/i200031a031

19.    Bakr, M. Y., Yokono, T., Sanada, Y., Akiyama, M. Role of pyrite during the thermal degradation of kerogen using in situ high-temperature ESR technique. Energ. Fuel., 1991, 5(3), 441–444.
https://doi.org/10.1021/ef00027a014

20.    Gai, R. H., Jin, L. J., Zhang, J. B., Wang, J. Y., Hu, H. Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol., 2014, 105, 342–347.
https://doi.org/10.1016/j.jaap.2013.11.022

21.    Hascakir, B., Babadagli, T., Akin, S. Experimental and numerical simulation of oil recovery from oil shales by electrical heating. Energ. Fuel., 2008, 22(6), 3976–3985.
https://doi.org/10.1021/ef800389v

22.    Hascakir, B., Akin, S. Recovery of Turkish oil shales by electromagnetic heat­ing and determination of the dielectric properties of oil shales by an analytical method. Energ. Fuel., 2010, 24(1), 503–509.
https://doi.org/10.1021/ef900868w

23.    Feng, J., Xue, X. Y., Li, X. H., Li, W. Y., Guo, X. F., Liu, K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts. Fuel Process. Technol., 2015, 130, 96–100.
https://doi.org/10.1016/j.fuproc.2014.09.035

24.    Jiang, H. F., Song, L. H., Cheng, Z. Q., Chen, J., Zhang, L., Zhang, M. Y., Hu, M. J., Li, J. N., Li, J. F. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis. J. Anal. Appl. Pyrol., 2015, 112, 230–236.
https://doi.org/10.1016/j.jaap.2015.01.020

25.    Williams, P. T., Chishti, H. M. Two stage pyrolysis of oil shale using a zeolite catalyst. J. Anal. Appl. Pyrol., 2000, 55(2), 217–234.
https://doi.org/10.1016/S0165-2370(00)00071-1

26.    Williams, P. T., Chishti, H. M. Influence of residence time and catalyst regenera­tion on the pyrolysis–zeolite catalysis of oil shale. J. Anal. Appl. Pyrol., 2001, 60(2), 187–203.
https://doi.org/10.1016/S0165-2370(00)00198-4

27.    Han, X. X., Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energ., 2009, 86(11), 2381–2385.
https://doi.org/10.1016/j.apenergy.2009.03.014

28.    Li, S. Q., Yao, Q., Chi, Y., Yan, J. H., Cen, K. F. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Ind. Eng. Chem. Res., 2004, 43(17), 5133–5145.
https://doi.org/10.1021/ie030115m

29.    Liu, Q. R., Hu, H. Q., Zhou, Q., Zhu, S. W., Chen, G. H. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel, 2004, 83(6), 713–718.
https://doi.org/10.1016/j.fuel.2003.08.017

30.    Fu, Y., Guo, Y. H., Zhang, K. X. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis. Energ. Fuel., 2016, 30(3), 2428–2433.
https://doi.org/10.1021/acs.energyfuels.5b02720

31.    William, L. H., Michel, B. Transition metal and metal oxide catalysed gasifica­tion of carbon by oxygen, water, and carbon dioxide. Fuel, 1983, 62(2), 132–165.

32.    Rizkiana, J., Guan, G. Q., Widayatno, W. B., Hao, X. G., Wang, Z. D., Zhang, Z. L., Abudula, A. Oil production from mild pyrolysis of low-rank coal in molten salts media. Appl. Energ., 2015, 154, 944–950.
https://doi.org/10.1016/j.apenergy.2015.05.092

33.    Jiang, H. F., Song, L. H., Cheng, Z. Q., Chen, J., Zhang, L., Zhang, M. Y., Hu, M. J., Li, J. N., Li, J. F. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyro­lysis. J. Anal. Appl. Pyrol., 2015, 112, 230–236.
https://doi.org/10.1016/j.jaap.2015.01.020

34.    Qi, X. J., Guo, X., Xue, L. C., Zheng, C. G. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity. J. Anal. Appl. Pyrolysis, 2014, 110, 401–407.
https://doi.org/10.1016/j.jaap.2014.10.011

35.    Yu, H. L., Jiang, X. M. Study of pyrolysis property of Huadian oil shale. Journal of Fuel Chemistry and Technology, 2001, 29(5), 450–455 (in Chinese).

36.    Qin, Z. Effect of Iron and Potassium Additives on Transformation of Sulfur and Pyrolysis Characteristics of Coal. Master Dissertation, Taiyuan University of Technology, 2012 (in Chinese).

37.    Artok, L., Schobert, H. H. Reaction of carboxylic acids under coal liquefaction conditions. 2: Under hydrogen atmosphere. J. Anal. Appl. Pyrol., 2000, 54(1–2), 235–246.
https://doi.org/10.1016/S0165-2370(99)00086-8

38.    Guan, R. G., Li, W., Li, B. Q. Effects of Ca-based additives on pyrolysis of Datong coal. Journal of China University of Mining &Technology, 2002, 31(4), 396–401.

39.    Ren, X. R. Desulfurization Performance of Iron Manganese Based Sorbents at Mid-Temperature and Effect of Ambient Gases on Them. Doctoral Dissertation, Taiyuan University of Technology, 2010 (in Chinese).

40.    Carter, S. D., Taulbee, D. N. Fluidized bed steam retorting of Kentucky oil shale. Fuel Processing Technology, 1985, 11(3), 251–272.
https://doi.org/10.1016/0378-3820(85)90004-9

41.    Jacobson, I. A., Decora, A. W., Cook, G. L. Retorting indexes for oil shale pyro­lysis from ethane/ethane ratios of product gases. In: Science and Technology of Oil Shale (Yen, T. F. ed.). Ann Arbor Science Publishers, Ann Arbor, MI, 1976, p. 103.

42.    Raley, J. H. Monitoring oil shale retorts by off-gas alkene/alkane ratios. Fuel, 1980, 59(6), 419–424.
https://doi.org/10.1016/0016-2361(80)90195-7

43.    Williams, P. T., Nazzal, J. M. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale. J. Anal. Appl. Pyrol., 1995, 35(2), 181–197.
https://doi.org/10.1016/0165-2370(95)00908-9

Back to Issue