ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
CHARACTERIZATION AND UTILIZATION OF OIL SHALE ASH MIXED WITH GRANITIC AND MARBLE WASTES TO PRODUCE LIGHTWEIGHT BRICKS; pp. 56–69
PDF | https//doi.org/10.3176/oil.2018.1.04

Authors
NAFETH ABDEL RAHMAN ABDEL HADI, MONTHER ABDELHADI
Abstract

This study aimed to investigate the possible utilization of different waste materials such as oil shale ash mixed with marble and granite sludge, to produce low-cost compressed strong lightweight masonry bricks and alike. Various mixtures of the three wastes were prepared with different propor­tions by weight. Characterization of the produced bricks was conducted by carrying out laboratory tests including but not limited to absorption, permeability, dry density, void ratio, thermal conductivity and compressive strength. On average, compressive strength values were 3.5 and 3.8 MPa at 28 days for ash-granite and ash-marble sludge, respectively, compared with the specified value of 3.5 MPa for cement bricks. The strength of ash-based samples is attributed to the alkali-pozzolanic reaction in the tested composites. On the other hand, the tested samples showed a very low permeability ranging from 3 × 10–6 to 7.2 × 10–6 cm/sec, in addition to the low dry density between 1.14 and 1.27 g/cm3. Moreover, a low thermal con­ductivity of about 0.1 and 0.2 W/m K was measured for the produced bricks. Such results are encouraging to investigate further the properties and feasibility of production of such new bricks which would be used to build new low-income houses.

References

 1.       USGS. Geology and Resources of Some World Oil-Shale Deposits. Scientific Investigations Report 2005–5294, 2005.

2.       Jaber, J. O., Amri, K., Ibrahim, K. Experimental investigation of effects of oil shale composition on its calorific value and oil yield. Int. J. Oil, Gas and Coal Technology, 2011, 4(4), 307–321.
https://doi.org/10.1504/IJOGCT.2011.043714

3.       Raukas, A., Punning, J.-M. Environmental problems in the Estonian oil shale industry. Energy Environ. Sci., 2009, 2(7), 723–728.
https://doi.org/10.1039/b819315k

4.       Qian, J., Wang, J., Li, S. Oil Shale development in China. Oil Shale, 2003, 20(3S), 356–359.

5.       Ibrahim, K. M., Jaber, J. O. Geochemistry and environmental impacts of retorted oil shale from Jordan. Environ. Geol., 2007, 52(5), 979984.
https://doi.org/10.1007/s00254-006-0540-6

6.       Carlson, C. L., Adriano, D. C. Environmental impacts of coal combustion residues. J. Environ. Qual., 1993, 22(2), 227–247.
https://doi.org/10.2134/jeq1993.00472425002200020002x

7.       Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., Bondarenko, O., Kanarbik, L., Sihtmäe, M., Aruoja, V., Schvede, H., Kahru, A. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229–230, 192–200.
https://doi.org/10.1016/j.jhazmat.2012.05.095

8.       Dhanapandian, S., Shanthi, M. Utilization of marble and granite wastes in brick products. Journal of Industrial Pollution Control, 2009, 25(2), 145–150.

9.       Hadi, N. A. R. A., Khoury, H. N., Suliman, M. R. Utilization of bituminous limestone ash from El-Lajjun area for engineering applications. Acta Geotech., 2008, 3(2), 139–151.
https://doi.org/10.1007/s11440-008-0063-2

10.    Hadi, N. A. R. A. Stabilization of the phosphatic wastes using high calcium ash in Jordan. Can. J. Civ. Eng., 2008, 35(11), 1193–1199.
https://doi.org/10.1139/L08-075

11.    Hadi, N. A. R. A., Khoury, H. N., Kharabsheh, M. S. Utilization of bituminous limestone ash from El-Lajjun area in production of lightweight Masonry block. Acta Geotech., 2009, 4(3), 215–222.
https://doi.org/10.1007/s11440-009-0089-0

12.    Aukour, F. J. Incorporation of marble sludge in industrial building eco-blocks or cement bricks formulation. Jordan J. Civ. Eng., 2009, 3(1), 58–65.

13.    Li., C., Sun, H., Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement Concrete Res., 2010, 40(9), 1341–1349.
https://doi.org/10.1016/j.cemconres.2010.03.020

14.    Ghosh, A., Subbarao, C. Microstructural development in fly ash modified with lime and gypsum. J. Mat. Civ. Eng., 2001, 13(1), 65–70.
https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(65)

15.    Kumar, A., Walia, B., Bajaj, A. Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J. Mater. Civ. Eng., 2007, 19(3), 242–248.
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242)

16.    Nagaraj, H. B., Sravan, M. V., Arun, T. G., Jagadish, K. Role of lime with cement in long-term strength of compressed stabilized earth blocks. Int. J. Sustain., 2014, 3(1), 54–61.
https://doi.org/10.1016/j.ijsbe.2014.03.001

17.    Shi, C. Pozzolanic reaction and microstructure of chemical activated lime-fly ash pastes. ACI Mater. J., 1998, 95(5), 537–545.

18.    ASTM C29. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. American Society for Testing and Materials. ASTM International, 2016.

19.    ASTM C127. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. American Society for Testing and Materials. ASTM International, 2015.

20.    ASTM D2216. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American Society for Testing and Materials. ASTM International, 2010.

21.    ASTM C128. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. American Society for Testing and Materials. ASTM International, 2007.

22.    ASTM C129. Standard Specification for Nonloadbearing Concrete Masonry Units. American Society for Testing and Materials. ASTM International, 2014.

23.    Jordan Standards and Metrology Organization. 1992JS 84. Construction materials – Cellular concrete blocks of thickness (100, 120, 150, and 200 mm).

24.    Freds, G. International RILEM TC 168-ISA. Workshop on Internal Sulfate Attack and Delayed Ettringite Formation 4–6 September 2002, Villars, Switzer­land, 2002.

25.    ASTM D5084. Standard Test Methods for Measurement of Hydraulic Con­ductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. American Society for Testing and Materials. ASTM International, 2003.

26.    Chadderton, D. V. Building Services Engineering, 5th edition, Taylor & Francis, New York, 2007.  

 

Back to Issue