In this paper, the direct liquefaction of Turkish Niğde-Ulukışla oil shale in noncatalytic and catalytic conditions was studied. The effects of pressure, tetralin/oil shale ratio, catalyst type and concentration, reaction time and temperature and oil shale/waste paper ratio on the process were investigated. It was found that tetralin/oil shale ratio had no considerable effect on the total and liquefaction products conversions under the noncatalytic conditions. Fe2O3, MoO3, Mo(CO)6, Cr(CO)6 and zeolite were used as catalysts in catalytic liquefaction. The highest total and liquefaction products conversions were obtained using MoO3 as catalyst at a concentration of 9% by weight. Reaction temperature of 400 °C and reaction time of 90 minutes were chosen according to obtained liquefaction results. Co-liquefaction experiments were performed using waste paper. Both the total and oil + gas conversions were increased to a considerable extent by the application of the co-liquefaction process. According to gas chromatographic-mass spectrometric (GC-MS) analysis, the liquid product from the liquefaction process of oil shale under catalytic conditions of experiment 22 consisted mainly of naphthalene and its derivatives and polycyclic hydrocarbon such as indene and its derivatives.
1. Shah, Y. T. Reaction Engineering in Direct Coal Liquefaction. Addison-Wesley Advanced Book Program, Reading, Massachusetts, 1981.
2. Liu, Z., Shi, S., Li, Y. Coal liquefaction technologies – Development in China and challenges in chemical reaction engineering. Chem. Eng. Sci., 2010, 65(1), 12–17.
https://doi.org/10.1016/j.ces.2009.05.014
3. Stihle, J., Uzio, D., Lorentz, C., Charon, N., Ponthus, J., Geantet, C. Detailed characterization of coal-derived liquids from direct coal liquefaction on supported catalysts. Fuel, 2012, 95, 79–87.
https://doi.org/10.1016/j.fuel.2011.11.072
4. Jiang, H., Deng, S., Chen, J., Zhang, M., Li, S., Shao, Y., Yang, J., Li, J. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale. Energ. Convers. Manage., 2017, 143, 505–512.
https://doi.org/10.1016/j.enconman.2017.04.037
5. Wu, T., Xue, Q., Li, X., Tao, Y., Jin, Y., Ling, C., Lu, S. Extraction of kerogen from oil shale with supercritical carbon dioxide: Molecular dynamics simulations. J. Supercrit. Fluid., 2016, 107, 499–506.
https://doi.org/10.1016/j.supflu.2015.07.005
6. Lin, L., Lai, D., Guo, E., Zhang, C., Xu, G. Oil shale pyrolysis in indirectly heated fixed bed with metallic plates of heating enhancement. Fuel, 2016, 163, 48–55.
https://doi.org/10.1016/j.fuel.2015.09.024
7. Shi, W., Wang, Z., Song, W., Li, S., Li, X. Pyrolysis of Huadian oil shale under catalysis of shale ash. J. Anal. Appl. Pyrol., 2017, 123, 160–164.
https://doi.org/10.1016/j.jaap.2016.12.011
8. Zhao, X., Liu, Z., Liu, Q. The bond cleavage and radical coupling during pyrolysis of Huadian oil shale. Fuel, 2017, 199, 169–175.
https://doi.org/10.1016/j.fuel.2017.02.095
9. Bai, F., Sun, Y., Liu, Y., Guo, M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1–8.
https://doi.org/10.1016/j.fuel.2016.09.012
10. Pan, L., Dai, F., Li, G., Liu, S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy, 2015, 86, 749–757.
https://doi.org/10.1016/j.energy.2015.04.081
11. Abourriche, A. K., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., El Hafiane, Y., Abourriche, A. M., Pailler, R., Naslain, R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale. J. Supercrit. Fluid., 2013, 84, 98–104.
https://doi.org/10.1016/j.supflu.2013.09.018
12. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037
13. Tiikma, L., Johannes, I., Luik, H., Zaidentsal, A., Vink, N. Thermal dissolution of Estonian oil shale. J. Anal. Appl. Pyrol., 2009, 85(1–2), 502–507.
https://doi.org/10.1016/j.jaap.2008.09.009
14. Yanik, J., Yüksel, M., Sağlam, M., Olukçu, N., Bartle, K., Frere, B. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel, 1995, 74(1), 46–50.
https://doi.org/10.1016/0016-2361(94)P4329-Z
15. Lin, Y., Liao, Y., Yu, Z., Fang, S., Lin, Y., Fan, Y., Peng, X., Ma, X. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energ. Convers. Manage., 2016, 118, 345–352.
https://doi.org/10.1016/j.enconman.2016.04.004
16. Hu, Z., Ma, X., Li, L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst., 2016, 89(3), 447–455.
https://doi.org/10.1016/j.joei.2015.02.009
17. Tiikma, L., Johannes, I., Luik, H., Gregor, A. Synergy in the hydrothermal pyrolysis of oil shale/sawdust blends. J. Anal. Appl. Pyrol., 2016, 117, 247–256.
https://doi.org/10.1016/j.jaap.2015.11.008
18. Kılıç, M., Pütün, A. E., Uzun, B. B., Pütün, E., Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis. Energ. Convers. Manage., 2014, 78, 461–467.
https://doi.org/10.1016/j.enconman.2013.11.002
19. Johannes, I., Tiikma, L., Luik, H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrol., 2013, 104, 341–352.
https://doi.org/10.1016/j.jaap.2013.06.015
20. Aboulkas, A., Makayssi, T., Bilali, L., El harfi, K., Nadifiyine, M., Benchanaa, M. Co-pyrolysis of oil shale and High density polyethylene: Structural characterization of the oil. Fuel Process. Technol., 2012, 96, 203–208.
https://doi.org/10.1016/j.fuproc.2011.12.003
21. Luik, H., Luik, L., Tiikma, L., Vink, N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. J. Anal. Appl. Pyrol., 2007, 79(1–2), 205–209.
https://doi.org/10.1016/j.jaap.2006.12.003
22. Allawzi, M., Al-Otoom, A., Allaboun, H., Ajlouni, A., Al Nseirat, F. CO2 supercritical fluid extraction of Jordanian oil shale utilizing different co-solvents. Fuel Process. Technol., 2011, 92(10), 2016–2023.
https://doi.org/10.1016/j.fuproc.2011.06.001
23. Abourriche, A., Oumam, M., Hannache, H., Adil, A., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Effect of toluene proportion on the yield and composition of oils obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluid., 2009, 51(1), 24–28.
https://doi.org/10.1016/j.supflu.2009.07.003
24. El harfi, K., Bennouna, C., Mokhlisse, A., Ben chanâa, M., Lemée, L., Joffre, J., Amblès, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. Appl. Pyrol., 1999, 50(2), 163–174.
https://doi.org/10.1016/S0165-2370(99)00028-5
25. Yang, Q., Qian, Y., Kraslawski, A., Zhou, H., Yang, S. Advanced exergy analysis of an oil shale retorting process. Appl. Energ., 2016, 165, 405–415.
https://doi.org/10.1016/j.apenergy.2015.12.104
26. Chen, B., Han, X., Li, Q., Jiang, X. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis. Energ. Convers. Manage., 2016, 127, 284–292.
https://doi.org/10.1016/j.enconman.2016.09.019
27. Hascakir, B., Babadagli, T, Akin, S. Experimental and numerical simulation of oil recovery from oil shales by electrical heating. Energ. Fuel., 2008, 22, 3976–3985.
https://doi.org/10.1021/ef800389v
28. Sınag, A., Canel, M. Comparison of retorting and supercritical extraction techniques on gaining liquid products from Göynük oil shale (Turkey). Energ. Source., 2004, 26(8), 739–749.
https://doi.org/10.1080/00908310490445599
29. Tucker, J. D., Masri, B., Lee, S. A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energ. Source., 2000, 22(5), 453–463.
https://doi.org/10.1080/00908310050013866
30. Hepbaslı, A. Oil shale as an alternative energy source. Energ. Source., 2004, 26(2), 107–118.
https://doi.org/10.1080/00908310490258489
31. Altun, N. E., Hiçyılmaz, C., Hwang, J.-Y., Bağcı, A. S., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3), 211–227.
32. Ekinci, E. Turkish oil shales potential for synthetic crude oil and carbon material production. International Conference on Oil Shale: “Recent Trends in Oil Shale”, 7–9 November 2006, Amman, Jordan, Paper No. rtos-A123.
33. Şengüler, İ., Kara-Gülbay, R., Korkmaz, S. Organic geochemical characteristics of Miocene oil shale deposits in the Eskişehir Basin, western Anatolia, Turkey. Oil Shale, 2014, 31(4), 315–336.
https://doi.org/10.3176/oil.2014.4.02
34. Metecan, İ. H., Sağlam, M., Yanık, J., Ballice, L., Yüksel, M. Effect of pyrite catalyst on the hydroliquefaction of Göynük (Turkey) oil shale in the presence of toluene. Fuel, 1999, 78(5), 619–622.
https://doi.org/10.1016/S0016-2361(98)00182-3
35. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of Beypazari oil shale by pyrolysis. J. Anal. Appl. Pyrol., 2002, 64(1), 29–41.
https://doi.org/10.1016/S0165-2370(01)00168-1
36. Ballice, L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol., 2005, 86(6), 673–690.
https://doi.org/10.1016/j.fuproc.2004.07.003
37. Karaca, H., Ceylan, K., Olcay, A. Catalytic dissolution of two Turkish lignites in tetralin under nitrogen atmosphere: effects of the extraction parameters on the conversion. Fuel, 2001, 80(4), 559–564.
https://doi.org/10.1016/S0016-2361(00)00119-8
38. Rodriguez, I. M., Chomon, M. J., Caballero, B., Arias, P. L, Legarreta, J. A. Liquefaction behaviour of a Spanish subbituminous A coal under different conditions of hydrogen availability. Fuel Process. Technol., 1998, 58(1), 17–24.
https://doi.org/10.1016/S0378-3820(98)00084-8
39. Wang, Z., Shui, H., Zhang, D., Gao, J. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction. Fuel, 2007, 86(5–6), 835–842.
https://doi.org/10.1016/j.fuel.2006.09.018
40. Shui, H., Chen, Z., Wang, Z., Zhang, D. Kinetics of Shenhua coal liquefaction catalyzed by SO42-/ZrO2 solid acid. Fuel, 2010, 89(1), 67–72.
https://doi.org/10.1016/j.fuel.2009.02.019
41. Ishak, M. A. M., Ismail, K., Abdullah, M. F., Kadir, M. O. A., Mohamed, A. R., Abdullah, W. H. Liquefaction studies of low-rank Malaysian coal using high-pressure high-temperature batch-wise reactor. Coal Prep., 2005, 25(4), 221–237.
https://doi.org/10.1080/07349340500444471
42. Rafiqul, I., Lugang, B., Yan, Y., Li, T. Study on co-liquefaction of coal and bagasse by factorial experiment design method. Fuel Process. Technol., 2000, 68(1), 3–12.
https://doi.org/10.1016/S0378-3820(00)00107-7
https://doi.org/10.1016/j.enconman.2014.07.007