In this paper, the effect of several transition metal salts such as FeCl2∙4H2O, CoCl2∙6H2O, NiCl2∙6H2O and ZnCl2 on oil shale pyrolysis was investigated, based on thermal decomposition characteristics and product yields and compositions. The salts were added individually to Chinese Huadian oil shale by physical mixing. Pyrolysis experiments of oil shale with and without transition metal salts were performed in a thermogravimetric analyzer and a fixed bed reactor. Thermogravimetric analysis (TGA) suggested that CoCl2·6H2O and NiCl2·6H2O could promote oil shale pyrolysis, leading to a greater thermogravimetric mass loss than raw oil shale. By contrast, FeCl2∙4H2O and ZnCl2 had only a slight effect on the decomposition behavior of oil shale. The results of fixed bed pyrolysis experiments showed that all metal salts enhanced the secondary cracking of shale oil, which decreased the oil yield and increased the pyrolytic gas yield. The metal salts could also catalyze the aromatization of aliphatic hydrocarbons to yield aromatic hydrocarbons. The catalytic activity of the studied salts decreased in the order NiCl2∙6H2O > CoCl2∙6H2O > ZnCl2 > FeCl2∙4H2O.
1. Siirde, A. Oil shale − global solution or part of the problem. Oil Shale, 2008, 25(2), 201−202.
https://doi.org/10.3176/oil.2008.2.01
2. Altun, N. E., Hiçyilmaz, C., Hwang, J.-Y., Suat Bağci, A., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3), 211−227.
3. Nazzal, J. M. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale. Energ. Convers. Manage., 2008, 49(11), 3278−3286.
https://doi.org/10.1016/j.enconman.2008.03.028
4. Xie, F. F., Wang, Z., Lin, W. G., Song, W. L. Study on thermal conversion of Huadian oil shale under N2 and CO2 atmospheres. Oil Shale, 2010, 27(4), 309−320.
https://doi.org/10.3176/oil.2010.4.04
5. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol., 2014, 121, 9−15.
https://doi.org/10.1016/j.fuproc.2014.01.005
6. Wang, S., Liu, J. X., Jiang, X. M., Han, X. X., Tong, J. H. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27−47.
https://doi.org/10.3176/oil.2013.1.04
7. Williams, P. T., Chishti, H. M. Two stage pyrolysis of oil shale using a zeolite catalyst. J. Anal. Appl. Pyrol., 2000, 55(2), 217−234.
https://doi.org/10.1016/S0165-2370(00)00071-1
8. Williams, P. T., Chishti, H. M. Influence of residence time and catalyst regeneration on the pyrolysis−zeolite catalysis of oil shale. J. Anal. Appl. Pyrol., 2001, 60(2), 187−203.
https://doi.org/10.1016/S0165-2370(00)00198-4
9. Gai, R. H., Jin, L. J., Zhang, J. B., Wang, J. Y., Hu, H. Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol., 2014, 105, 342−347.
https://doi.org/10.1016/j.jaap.2013.11.022
10. Hu, M. J., Cheng, Z. Q., Zhang, M. Y., Liu, M. Z., Song, L. H., Zhang, Y. Q., Li, J. F. Effect of calcite, kaolinite, gypsum, and montmorillonite on Huadian oil shale kerogen pyrolysis. Energ. Fuel., 2014, 28(3), 1860−1867.
https://doi.org/10.1021/ef4024417
11. Lai, D. G., Chen, Z. H., Lin, L. X., Zhang, Y. M., Gao, S. Q., Xu, G. W. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash. Energ. Fuel., 2015, 29(4), 2219−2226.
https://doi.org/10.1021/ef502821c
12. Pinto, F., Gulyurtlu, I., Lobo, L. S., Cabrita, I. The effect of catalysts blending on coal hydropyrolysis. Fuel, 1999, 78(7), 761−768.
https://doi.org/10.1016/S0016-2361(98)00212-9
13. Feng, J., Xue, X. Y., Li, X. H., Li, W. Y., Guo, X. F., Liu, K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts. Fuel Process. Technol., 2015, 130, 96−100.
https://doi.org/10.1016/j.fuproc.2014.09.035
14. Öztaş, N. A., Yürüm, Y. Effect of catalysts on the pyrolysis of Turkish Zonguldak bituminous coal. Energ. Fuel., 2000, 14(4), 820−827.
https://doi.org/10.1021/ef9901847
15. Zou, X. W., Yao, J. Z., Yang, X. M., Song, W. L., Lin, W. G. Catalytic effects of metal chlorides on the pyrolysis of lignite. Energ. Fuel., 2007, 21(2), 619−624.
https://doi.org/10.1021/ef060477h
16. Kandiyoti, R., Lazaridis, J. I., Dyrvold, B., Weerasinghe, C. R. Pyrolysis of a ZnCl2-impregnated coal in an inert atmosphere. Fuel, 1984, 63(11), 1583−1587.
https://doi.org/10.1016/0016-2361(84)90231-X
17. Jiang, H. F., Song, L. H., Cheng, Z. Q., Chen, J., Zhang, L., Zhang, M. Y., Hu, M. J., Li, J. N., Li, J. F. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis. J. Anal. Appl. Pyrol., 2015, 112, 230−236.
https://doi.org/10.1016/j.jaap.2015.01.020
18. Li, Q. Y., Han, X. X., Liu, Q. Q., Jiang, X. M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates. Fuel, 2014, 121, 109−116.
https://doi.org/10.1016/j.fuel.2013.12.046
19. Lin, L. X., Zhang, C., Li, H. J., Lai, D. G., Xu, G. W. Pyrolysis in indirectly heated fixed bed with internals: The first application to oil shale. Fuel Process. Technol., 2015, 138, 147−155.
https://doi.org/10.1016/j.fuproc.2015.05.023
20. Ballice, L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol., 2005, 86(6), 673−690.
https://doi.org/10.1016/j.fuproc.2004.07.003
21. Han, J. Z., Wang, X. D., Yue, J. R., Gao, S. Q., Xu, G.. W. Catalytic upgrading of coal pyrolysis tar over char-based catalysts. Fuel Process. Technol., 2014, 122, 98−106.
https://doi.org/10.1016/j.fuproc.2014.01.033
https://doi.org/10.1016/S0165-2370(01)00119-X