ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
FOREST ECOSYSTEM RECOVERY IN 15-YEAR-OLD HYBRID ASPEN (Populus tremula L. × P. tremuloides Michx.) PLANTATIONS ON A RECLAIMED OIL SHALE QUARRY; pp. 368–389
PDF | https//doi.org/10.3176/oil.2017.4.05

Authors
REIMO LUTTER, TEA TULLUS, ARVO TULLUS, Arno Kanal, HARDI TULLUS
Abstract

The development of forest ecosystem components (tree layer, under­story vegetation and topsoil) in a reclaimed oil shale quarry was evaluated based on the repeated monitoring of sample plots 5 and 15 years after afforestation with hybrid aspen. Trees had been planted directly on levelled quarry spoil (site group A1) or on quarry spoil with restored topsoil (site group A2). The reference group included hybrid aspen plantations on former arable land (site group B1). Over a decade, the relative tree growth had been slower on A1 and A2 compared to B1. Soil reaction (pHKCl) had decreased and soil total nitrogen (Ntot) had increased on A1. High pHKCl value and low stocks of Ntot, phosphorus (P), manganese (Mn) and boron (B) restricted tree growth on A1. The properties of soil, as well as understory vegetation on A2 were similar to those on B1, which indicates that restored topsoil ensured the faster development of A2 towards the Hepatica forest type.

References

1.       Kaar, E. Afforestation of flattened oil shale quarries. In: Mining and Rehabilita­tion in Estonia (Kaar, E., Kiviste, K., eds.). Estonian University of Life Sciences, Tartu, 2010, 129–154 (in Estonian with English summary).
https://doi.org/10.1139/X09-069

2.       Karu, H., Szava-Kovats, R., Pensa, M., Kull, O. Carbon sequestration in a chrono­sequence of Scots pine stands in a reclaimed opencast oil shale mine. Can. J. Forest Res., 2009, 39(8), 1507–1517.

3.       Reintam, L., Kaar, E., Rooma, I. Development of soil organic matter under pine on quarry detritus of open-cast oil-shale mining. Forest Ecol. Manag., 2002, 171(1–2), 191–198.
https://doi.org/10.1016/S0378-1127(02)00472-3

4.       Reintam, L. Rehabilited quarry detritus as parent material for current pedo­genesis. Oil Shale, 2004, 21(3), 183–193.

5.       Vares, A., Lõhmus, K., Truu, M., Truu, J., Tullus, H., Kanal, A. Productivity of black alder (Alnus glutinosa (L.) Gaertn.) plantations on reclaimed oil-shale mining detritus and mineral soils in relation to rhizosphere conditions. Oil Shale, 2004, 21(1), 43–58.

6.       Kaar, E. Coniferous trees on exhausted oil shale opencast mines. Forestry Studies, 2000, 36, 120–125.

7.       Reintam, L. Changes in the texture and exchange properties of skeletal quarry detritus under forest during thirty years. Proc. Estonian Acad. Sci. Biol. Ecol., 2001, 50(1), 5–13.

8.       Vaus, M. Afforestation Potential of Estonian Oil Shale Quarry Soils. Valgus, Tallinn, 1970 (in Estonian).

9.       Leedu, E. Agricultural reclamation of open cast oil shale mines. In: Mining and Rehabilitation in Estonia (Kaar, E., Kiviste, K., eds.). Estonian University of Life Sciences, Tartu, 2010, 219–254 (in Estonian with English summary).

10.    Tullus, A., Soo, T., Tullus, H., Vares, A., Kanal, A., Roosaluste, E. Early growth and floristic diversity of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on a reclaimed opencast oil shale quarry in north-east Estonia. Oil Shale, 2008, 25(1), 57–74.
https://doi.org/10.3176/oil.2008.1.07

11.    Macdonald, S. E., Landhäusser, S. M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D. F., Quideau, S. Forest restoration following surface mining disturbance: challenges and solutions. New Forest., 2015, 46(5–6), 703–732.
https://doi.org/10.1007/s11056-015-9506-4

12.    Vindušková, O., Frouz, J. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environ. Earth Sci., 2013, 69(5), 1685–1698.
https://doi.org/10.1007/s12665-012-2004-5

13.    Kuznetsova, T., Lukjanova, A., Ots, K., Rosenvald, K., Ostonen, I., Lõhmus, K. Biomass allocation, leaf and fine root morphological adaptations in young black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations on reclaimed oil shale post-mining areas. Oil Shale, 2014, 31(3), 289–303.
https://doi.org/10.3176/oil.2014.3.08

14.    Kaar, E., Raid, L. Some results about afforestation of flattened oil shale quarries. Forestry Studies, 1992, 25, 109–117 (in Estonian).

15.    Ostonen, I., Lõhmus, K., Alama, S., Truu, J., Kaar, E., Vares, A., Uri, V., Kur­vits, V. Morphological adaptations of fine roots in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth.) and black alder (Alnus glutinosa (L.) Gaertn.) stands in recultivated areas of oil shale mining and semicoke hills. Oil Shale, 2006, 23(2), 187–202.

16.    Chodak, M., Niklińska, M. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biol. Fert. Soils, 2010, 46(6), 555–566.
https://doi.org/10.1007/s00374-010-0462-z

17.    Kuznetsova, T., Lukjanova, A., Mandre, M., Lõhmus, K. Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. Forest Ecol. Manag., 2011, 262(2), 56–64.
https://doi.org/10.1016/j.foreco.2010.09.030

18.    Rosenvald, K., Kuznetsova, T., Ostonen, I., Truu, M., Truu, J., Uri, V., Lõh­mus, K. Rhizosphere effect and fine-root morphological adaptations in a chrono­sequence of silver birch stands on reclaimed oil shale post-mining areas. Ecol. Eng., 2011, 37(7), 1027–1034.
https://doi.org/10.1016/j.ecoleng.2010.05.011

19.    Laarmann, D., Korjus, H., Sims, A., Kangur, A., Kiviste, A., Stanturf, J. A. Evalua­tion of afforestation development and natural colonization on a reclaimed mine site. Restor. Ecol., 2015, 23(3), 301–309.
https://doi.org/10.1111/rec.12187

20.    Frouz, J., Keplin, B., Pižl, V., Tajovský, K., Starý, J., Lukešová, A., Nová­ková, A., Balík, V., Háněl, L., Materna, J., Düker, C., Chalupský, J., Rusek, J., Heinkele, T. Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol. Eng., 2001, 17(2–3), 275–284.
https://doi.org/10.1016/S0925-8574(00)00144-0

21.    Bungart, R., Hüttl, R. F. Production of biomass for energy in post-mining landscapes and nutrient dynamics. Biomass Bioenerg., 2001, 20(3), 181–187.
https://doi.org/10.1016/S0961-9534(00)00078-7

22.    Bungart, R., Hüttl, R. F. Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur. J. For. Res., 2004, 123(2), 105–115.
https://doi.org/10.1007/s10342-004-0024-8

23.    Casselman, C. N., Fox, T. R., Burger, J. A., Jones, A. T., Galbraith, J. M. Effects of silvicultural treatments on survival and growth of trees planted on reclaimed mine lands in the Appalachians. Forest Ecol. Manag., 2006, 223(1–3), 403–414.
https://doi.org/10.1016/j.foreco.2005.12.020

24.    Tullus, A., Tullus, H., Vares, A., Kanal, A. Early growth of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on former agricultural lands in Estonia. Forest Ecol. Manag., 2007, 245(1–3), 118–129.
https://doi.org/10.1016/j.foreco.2007.04.006

25.    Tullus, A., Rytter, L., Tullus, T., Weih, M., Tullus, H. Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand. J. Forest Res., 2012, 27(1), 10–29.
https://doi.org/10.1080/02827581.2011.628949

26.    Lutter, R., Tullus, A., Kanal, A., Tullus, T., Tullus, H. The impact of short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on nutritional status of former arable soils. Forest Ecol. Manag., 2016, 362, 184–193.
https://doi.org/10.1016/j.foreco.2015.12.009

27.    Kuznetsova, T., Rosenvald, K., Ostonen, I., Helmisaari, H.-S., Mandre, M., Lõh­mus, K. Survival of black alder (Alnus glutinosa L.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings in a reclaimed oil shale mining area. Ecol. Eng., 2010, 36(4), 495–502.
https://doi.org/10.1016/j.ecoleng.2009.11.019

28.    Burns, R. C., Hardy, R. W. F. Nitrogen Fixation in Bacteria and Higher Plants. Springer-Verlag, New York, 1975.
https://doi.org/10.1007/978-3-642-80926-2

29.    Jefferies, R. A., Bradshaw, A. D., Putwain, P.  D. Growth, nitrogen accumula­tion and nitrogen transfer by legume species established on mine spoils. J. Appl. Ecol., 1981, 18(3), 945–956.
https://doi.org/10.2307/2402384

30.    Holl, K. D., Cairns, J. Jr. Vegetational community development on reclaimed coal surface mines in Virginia. B. Torrey Bot. Club, 1994, 121(4), 327–337.
https://doi.org/10.2307/2997006

31.    Holl, K. D. Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. J. Appl. Ecol., 2002, 39, 960–970.
https://doi.org/10.1046/j.1365-2664.2002.00767.x

32.    Pensa, M., Sellin, A., Luud, A., Valgma, I. An analysis of vegetation restoration on opencast oil shale mines in Estonia. Restor. Ecol., 2004, 12(2), 200–206.
https://doi.org/10.1111/j.1061-2971.2004.00323.x

33.    Pensa, M., Karu, H., Luud, A., Rull, E., Vaht, R. The effect of planted tree species on the development of herbaceous vegetation in a reclaimed opencast. Can. J. Forest Res., 2008, 38(10), 2674–2686.
https://doi.org/10.1139/X08-098

34.    Mudrák, O., Frouz, J., Velichová, V. Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol. Eng., 2010, 36(6), 783–790.
https://doi.org/10.1016/j.ecoleng.2010.02.003

35.    Vaht, R., Pensa, M., Sepp, M., Luud, A., Karu, H., Elvisto, T. Assessment of vegetation performance on semicoke dumps of Kohtla-Järve oil shale industry, Estonia. Estonian J. Ecol., 2010, 59(1), 3–18.
https://doi.org/10.3176/eco.2010.1.01

36.    Tullus, T., Tullus, A., Roosaluste, E., Lutter, R., Tullus, H. Vascular plant and bryophyte flora in mid-term hybrid aspen plantations on abandoned agricultural land. Can. J. Forest Res., 2015, 45(9), 1183–1191.
https://doi.org/10.1139/cjfr-2014-0464

37.    Franklin, J. A., Zipper, C. E., Burger, J. A., Skousen, J. G., Jacobs, D. F. Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New Forest., 2012, 43(5–6), 905–924.
https://doi.org/10.1007/s11056-012-9342-8

38.    Lõhmus, E. Ordination and classification of Estonian forests. Forestry Studies, 1974, 11, 162–194 (in Estonian).

39.    IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106, FAO, Rome, 2014.

40.    Johnsson, H. Growth of young hybrid aspen and an attempt for future prognosis. Svenska Skogsvårdsföreningens Tidskrift, 1953, 51, 73–96 (in Swedish).

41.    ISO 11261:1995. Soil quality – Determination of total nitrogen – Modified Kjeldahl method. International Organization for Standardization, Geneva, Italy, 1995.

42.    Mehlich, A. Mehlich 3 soil test extractant: A modification of the Mehlich 2 extractant. Commun. Soil Sci. Plan., 1984, 15, 1409–1416.
https://doi.org/10.1080/00103628409367568

43.    Berger, K. C., Truog, E. Boron determination in soils and plants. Ind. Eng. Chem., Anal. Ed., 1939, 11, 540–545.
https://doi.org/10.1021/ac50138a007

44.    Kaar, E., Leedu, E., Kitse, E. Biological recultivation of the Estonian oil-shale fields. In: Problems of Soil Protection in Estonia (Reintam, L., ed.). Estonian Academy of Science, Tallinn, 1991, 108–121 (in Estonian).

45.    Leht, M. Handbook of Estonian Vascular Plants. Estonian University of Life Sciences, Eesti Loodusfoto, Tartu, 2010 (in Estonian).

46.    Vellak, K., Ingerpuu, N., Leis, M., Ehrlich, L. Annotated checklist of Estonian bryophytes. Folia Cryptog. Estonica, 2015, 52, 109–127.
https://doi.org/10.12697/fce.2015.52.14

47.    Dierßen, K. Distribution, Ecological Amplitude and Phytosociological Char­acterization of European Bryophytes. Bryophytorum Bibliotheca, 56, Berlin, Stuttgart, 2001.

48.    McCune, B., Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Gleneden Beach, Oregon, U.S.A, 2011.

49.    Oksanen, J., Blanchet, F. G., Kindt, R. M., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H. Vegan: Community Ecology Package. R Package Version 2.0-10, 2013, (http://CRAN.R-project.org/package=vegan).

50.    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015, (http://www.R-project.org/).

51.    Tullus, A., Kanal, A., Soo, T., Tullus, H. The impact of available water content in previous agricultural soils on tree growth and nutritional status in young hybrid aspen plantations in Estonia. Plant Soil, 2010, 333(1–2), 129–145.
https://doi.org/10.1007/s11104-010-0330-5

52.    Zettl, J. D., Barbour, S. L., Huang, M., Si, B. C., Leskiw, L. A. Influence of textural layering on field capacity of coarse soils. Can. J. Soil. Sci., 2011, 91(2), 133–147.
https://doi.org/10.4141/cjss09117

53.    Putz, F. E., Canham, C. D. Mechanisms of arrested succession in shrublands: root and shoot competition between shrubs and tree seedlings. Forest Ecol. Manag., 1992, 49(3–4), 267–275.
https://doi.org/10.1016/0378-1127(92)90140-5

54.    Abakumov, E. V., Gagarina, E. I. Humus status of soils of overgrown quarries in Leningrad oblast. Eurasian Soil Sci., 2008, 41(3), 255–264.
https://doi.org/10.1134/S1064229308030034

55.    Lutter, R., Tullus, A., Kanal, A., Tullus, T., Tullus, H. Above-ground growth and temporal plant-soil relations in midterm hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on former arable lands in hemiboreal Estonia. Scand. J. Forest Res., 2017, X, 1–12.
https://doi.org/10.1080/02827581.2017.1278784

56.    Andrews, J. A., Johnson, J. E., Torbert, J. L., Burger, J. A., Kelting, D. L. Minesoil and site properties associated with early height growth of eastern white pine. J. Environ. Qual., 1998, 27(1), 192–199.
https://doi.org/10.2134/jeq1998.00472425002700010027x

57.    Lehto, T., Ruuhola, T., Dell, B. Boron in forest trees and forest ecosystems. Forest Ecol. Manag., 2010, 260, 2053–2069.
https://doi.org/10.1016/j.foreco.2010.09.028

58.    Reimann, C., Arnoldussen, A., Boyd, R., Finne, T. E., Koller, F., Nord­gulen, Ø., Englmaier, P. Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Sci. Total Environ., 2007, 377(2–3), 416–433.
https://doi.org/10.1016/j.scitotenv.2007.02.011

59.    Abdul-Kareem, A. W., McRae, S. G. The effects on topsoil of long-term storage in stockpiles. Plant Soil, 1984, 76(1–3), 357–363.
https://doi.org/10.1007/BF02205593

60.    Prach, K., Řehounková, K. Vegetation succession over broad geographical scales: which factors determine the patterns? Preslia, 2006, 78, 469–480.

61.    Gachet, S., Leduc, A., Bergeron, Y., Nguyen-Xuan, T., Tremblay, F. Under­story vegetation of boreal tree plantations: Differences in relation to previous land use and natural forests. Forest Ecol. Manag., 2007, 242, 49–57.
https://doi.org/10.1016/j.foreco.2007.01.037

Soo, T., Tullus, A., Tullus, H., Roosaluste, E. Floristic diversity responses in young hybrid aspen plantations to land-use history and site preparation treat­ments. Forest Ecol. Manag., 2009, 257(3), 858–867.
https://doi.org/10.1016/j.foreco.2008.10.018

Back to Issue