ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
ORGANIC GEOCHEMICAL STUDY OF THE UPPER LAYER OF ALEKSINAC OIL SHALE IN THE DUBRAVA BLOCK, SERBIA; pp. 197–218
PDF | https://doi.org/10.3176/oil.2017.3.01

Authors
GORDANA GAJICA, ALEKSANDRA ŠAJNOVIĆ, KSENIJA STOJANOVIĆ, ALEKSANDAR KOSTIĆ, IAN SLIPPER, MILAN ANTONIJEVIĆ, HANS PETER NYTOFT, BRANIMIR JOVANČIĆEVIĆ
Abstract

A detailed evaluation of geochemical properties of oil shale samples from the outcrops of the Lower Miocene upper layer in the Dubrava area, Aleksinac basin, Serbia, was performed. For that purpose X-ray dif­frac­tion (XRD) analysis, Rock Eval pyrolysis, gas chromatography-mass spectro­metry (GC-MS) analysis of biomarkers and conventional pyrolysis in an autoclave were used.
   Most of the samples have similar mineral compositions with predominance of clay and feldspar minerals. Three samples are characterised by an elevated content of carbonates, and among them one sample has a notable prevalence of this mineral group. This sample also demonstrated certain differences in biomarker distribution.
   In most samples organic matter (OM) consists predominantly of type I and II kerogens, showing high oil generative potential, whereas three samples, which contain type II kerogen with a certain input of type III kerogen, demonstrated potential to produce both, oil and gas. The OM of all samples is immature and corresponds to the vitrinite reflectance of ca. 0.40%. Bio­marker patterns along with Rock-Eval data indicated a strong contribution of aquatic organisms such as green and brown algae and bacteria with some influence of higher plants OM. The organic matter was deposited in a reduc­ing lacustrine alkaline brackish to freshwater environment under warm climate conditions. Preservation of OM was governed by stratification of the water column rather than its height. Tectonic movements that caused the regional tilting of an investigated area and supported minor marine ingression and influx of fresh water played an important role in formation of the sediments.
   Conventional pyrolytic experiments confirmed that these sediments at the catagenetic stage could be a significant source of liquid hydrocarbons.

References

 1.       Ercegovac, M., Grgurović, D., Bajc, S., Vitorović, D. Oil shale in Serbia: geo­logical and chemical-technological investigations, actual problems of explora­tion and feasibility studies. In: Mineral Material Complex of Serbia and Monte­negro at the Crossings of Two Millenniums (Vujić, S., еd.). Margo-Art, Bel­grade, 2003, 368–378 (in Serbian, with English abstract).

2.       Jelenković, R., Kostić, A., Životić, D., Ercegovac, M. Mineral resources of Serbia. Geol. Carpath., 2008, 59(4), 345–361.

3.       Ercegovac, M., Vitorović, D., Kostić, A., Životić, D., Jovančićević, B. Geology and Geochemistry of the Aleksinac oil shale deposit (Serbia). In: Book of Abstracts Joint 61st ICCP/26th TSOP Meeting “Advances in Organic Petrology and Organic Geochemistry”, September 19–26, 2009, Gramado, Brazil, P13, p. 6.

4.       Skala, D., Bastić, M., Jovanović, J., Rahimian, I. Pyrolysis of oil shale in a microretorting unit. Fuel, 1993, 72(6), 829–835.
https://doi.org/10.1016/0016-2361(93)90087-I

5.       Obradović, J., Djurdjević-Colson, J., Vasić, N. Phytogenic lacustrine sedi­menta­tion – oil shales in Neogene from Serbia, Yugoslavia. J. Paleolimnol., 1997, 18(4), 351–364.
https://doi.org/10.1023/A:1007907109399

6.       Čokorilo, V., Lilić, N., Purga, J., Milisavljević, V. Oil shale potential in Serbia. Oil Shale, 2009, 26(4), 451–462.
https://doi.org/10.3176/oil.2009.4.02

7.       Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence, 2nd ed. Springer-Verlag, Heidelberg, 1984.
https://doi.org/10.1007/978-3-642-87813-8

8.       Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide, Vol. 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History, Second edition. Cambridge University Press, Cambridge, 2005.

9.       Huizinga, B. J., Aizenshtat, Z. A., Peters, K. E. Programmed pyrolysis-gas chromato­graphy of artificially matured Green River kerogen. Energ. Fuel., 1988, 2, 74–81.
https://doi.org/10.1021/ef00007a011

10.    Stojanović, K., Šajnović, A., Sabo, T. J., Golovko, A., Jovančićević, B. Pyro­lysis and catalyzed pyrolysis in the investigation of a Neogene shale potential from Valjevo-Mionica basin, Serbia. Energ. Fuel., 2010, 24(8), 4357–4368.
https://doi.org/10.1021/ef100466f

11.    Petrović, M. Reserve Report for the Aleksinac Oil Shale – "Dubrava" Field. JP PEU, Resavica, 2012 (in Serbian).

12.    Ercegovac, M. Geology of Oil Shale. Građevinska knjiga, Belgrade, 1990 (in Serbian).

13.    Perunović, T., Stojanović, K., Simić, V., Kašanin-Grubin, M., Šajnović, A., Erić. V., Schwarzbauer, J., Vasić, N., Jovančićević, B., Brčeski, I. Organic geo­chemical study of the lower Miocene Kremna basin, Serbia. Ann. Soc. Geol. Pol., 2014, 84(3), 185–212.

14.    Vuković, N., Životić, D., Mendonça Filho, J. G., Kravić-Stevović, T., Hámor-Vidó, M., Mendonça, J. O., Stojanović, K. The assessment of maturation changes of humic coal organic matter – insights from closed-system pyrolysis experiments. Int. J. Coal Geol., 2016, 154–155, 213–239.
https://doi.org/10.1016/j.coal.2016.01.007

15.    Kabekkodu, S. N. (ed.). PDF-2 Release 2008. International Centre for Diffrac­tion Data: Newtown Square, PA, 2008.

16.    Rao, C. P. Modern Carbonates, Tropical, Temperate, Polar: Introduction to Sedi­mentology and Geochemistry. University of Tasmania, Hobart, Tasmania, 1996.

17.    Müller, G., Irion, G., Förstner, U. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 1972, 59(4), 158–164.
https://doi.org/10.1007/BF00637354

18.    Guo, L., Jiang, Z., Liang, C. Mineralogy and shale gas potential of Lower Silurian organic-rich shale at the southeastern margin of Sichuan Basin, South China. Oil Shale, 2016, 33(1), 1–17.
https://doi.org/10.3176/oil.2016.1.01

19.    Remy, R. R., Ferrell, R. E. Distribution and origin of analcime in marginal lacustrine mudstones of the Green River Formation, south-central Uinta Basin, Utah. Clays Clay Miner., 1989, 37(5), 419–432.
https://doi.org/10.1346/CCMN.1989.0370505

20.    Kašanin-Grubin, M. Sedimentology of the Oil Shales Series of the Aleksinac Basin. Master thesis, University of Belgrade, Belgrade, 1996 (in Serbian, with English abstract).

21.    Harrison, T. N. Experimental VNIR reflectance spectroscopy of gypsum dehydra­tion: Investigating the gypsum to bassanite transition. Am. Mineral., 2012, 97(4), 598–609.
https://doi.org/10.2138/am.2012.3667

22.    Hunt, J. M. Petroleum Geochemistry and Geology, 2nd ed. W. H. Freeman and Company, New York, 1996.

23.    Peters, K. E. Guidelines for evaluating petroleum source rock using pro­grammed pyrolysis. AAPG Bull., 1986, 70(3), 318–329.

24.    Peters, K. E., Cassa, M. R. Applied source rock geochemistry. In: The Petroleum System - From Source to Trap (Magoon, L. B., Dow, W. G., eds.), AAPG Memoir 60. Tulsa, 1994, 93–120.

25.    Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide, Vol. 1: Biomarkers and Isotopes in the Environment and Human History, Second edition. Cambridge University Press, Cambridge, 2005.

26.    Espitalié, J., Deroo, G., Marquis, F. La pyrolyse Rock-Eval et ses applications. Deuxième Partie. Rev. I. Fr. Petrol., 1985, 40(6), 755–784 (in French, with English abstract).
https://doi.org/10.2516/ogst:1985045

27.    Bordenave, M. L., Espitalié, J., Leplat, P., Oudin, J. L., Vandenbroucke, M. Screen­ing techniques for source rock evaluation. In: Applied Petroleum Geo­chemistry (Bordenave, M. L., ed.). Éditions Technip, Paris, 1993, 217–278.

28.    Dyman, T. S., Palacas, J. G., Tysdal, R. G., Perry, W. J., Pawlewicz, M. J. Source rock potential of middle Cretaceous rocks in Southwestern Montana. AAPG Bull., 1996, 80(8), 1177–1184.

29.    Moldowan, J. M., Seifert, W. K., Gallegos, E. J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull., 1985, 69(8), 1255–1268.

30.    Volkman, J. K., Zhang, Z., Xie, X., Qin, J., Borjigin, T. Biomarker evidence for Botryococcus and a methane cycle in the Eocene Huadian oil shale, NE China. Org. Geochem., 2015, 78, 121–134.
https://doi.org/10.1016/j.orggeochem.2014.11.002

31.    De Rosa, M., Gambacorta, A., Gliozzi, A. Structure, biosynthesis, and physico­chemical properties of archaebacterial lipids. Microbiol. Rev., 1986, 50(1), 70–80.

32.    Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 1986, 9(2), 83–99.
https://doi.org/10.1016/0146-6380(86)90089-6

33.    Wolff, G. A., Lamb, N. A., Maxwell, J. R. The origin and fate of 4-methyl steroid hydrocarbons. 1. Diagenesis of 4-methyl sterenes. Geochim. Cosmo­chim. Ac., 1986, 50(3), 335–342.

34.    Ourisson, G., Albrecht, P., Rohmer, M. The hopanoids: palaeochemistry and bio­chemistry of a group of natural products. Pure Appl. Chem., 1979, 51(4), 709–729.
https://doi.org/10.1351/pac197951040709

35.    Sofer, Z., Regan, D. R., Muller, D. S. Sterane isomerization ratios of oils as maturity indicators and their use as an exploration tool, Neuquen Basin, Argentina. Book of Proceedings, XII Geological Congress, Buenos Aires, Argentina, 1993, 407–411.

36.    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., Eglinton, G. Organic geo­chemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 1978, 272, 216–222.
https://doi.org/10.1038/272216a0

37.    ten Haven, H. L., de Leeuw, J. W., Rullkötter, J., Sinninghe Damsté, J. S. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 1987, 330, 641–643.
https://doi.org/10.1038/330641a0

38.    Fu, J., Sheng, G., Xu, J., Eglinton, G., Gowar, A. P., Jia, R., Fan, S., Peng, P. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Org. Geochem., 1990, 16(4–6), 769–779.

39.    Adam, P., Schmid, J. C., Mycke, B., Strazielle, C., Connan, J., Huc, A., Riva, A., Albrecht, P. Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum. Geochim. Cosmochim. Ac., 1993, 57(14), 3395–3419.
https://doi.org/10.1016/0016-7037(93)90547-A

40.    Peters, K. E., Cunningham, A. E., Walters, C. C., Jiang, J., Fan, Z. Petroleum systems in the Jiangling-Dangyang area, Jianghan Basin, China. Org. Geo­chem., 1996, 24(10–11), 1035–1060.

41.    Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., de Leeuw, J. W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Ac., 1995, 59(9), 1895–1900.
https://doi.org/10.1016/0016-7037(95)00073-9

42.    Casagrande, D. J. Sulphur in peat and coal. In: Coal and Coal-Bearing Strata: Recent Advances (Scott, A. C., ed.). Geol. Soc. Spec. Publ. 32, London, 1987, 87–105.
https://doi.org/10.1144/GSL.SP.1987.032.01.07

Berner, R. A., Raiswell, R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 1984, 12(6), 365–368.
https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2

Back to Issue