ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
SELF-CEMENTING PROPERTIES AND ALKALI ACTIVATION OF ENEFIT280 SOLID HEAT CARRIER RETORTING ASH; pp. 263–278
PDF | https://doi.org/10.3176/oil.2017.3.05

Authors
PEETER PAAVER, PÄÄRN PAISTE, RIHO MÕTLEP, KALLE KIRSIMÄE
Abstract

The composition and cementitious properties upon hydration and alkali activation of the solid heat carrier (SHC) ash produced in a new Enefit280 retort was studied. The Enefit280 waste heat boiler (WHB) ash is different from other SHC solid residues. It does not contain residual organics, but is characterized by a low content of reactive Ca-phases and the soluble amorphous (aluminium)-silicate phase/glass material. Cementation of Enefit280 ash upon hydration with plain water is limited and its uniaxial compressive strength stays < 4 MPa after 28 days of curing. Ash mixtures activated with sodium silicate based mixtures show higher compressive strength values, reaching > 10 MPa after 28 days of curing. The Enefit280 ash, compared to other ash types forming in the Estonian oil shale pro­ces­sing industry, has significantly poorer self-cementing properties. This needs to be taken into account when designing waste depositories, if other types of ash with better self-cementing properties are not co-deposited with this ash.

References

 1.     Liive, S. Oil shale energetics in Estonia. Oil Shale, 2007, 24(1), 1–4.

2.     Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda, Tallinn, 2006.

3.     Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.

4.     Mõtlep, R., Kirsimäe, K., Talviste, P., Puura, E., Jürgenson, J. Mineral com­posi­tion of Estonian oil shale semi-coke sediments. Oil Shale, 2007, 24(3), 405–422.

5.     Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3), 324–332.

6.     Veiderma, M. Estonian oil shale – Resources and usage. Oil Shale, 2003, 20(3S), 295–303.

7.     Aarna, I. Developments in production of synthetic fuels out of Estonian oil shale. Energ. Environ., 2011, 22(5), 541–552.
https://doi.org/10.1260/0958-305X.22.5.541

8.     Garcia-Lodeiro, I., Fernandez-Jimenez, A., Blanco, M. T., Palomo, A. FTIR study of the sol-gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Techn., 2008, 45(1), 63–72.

9.     Fernández-Carrasco, L., Torrens-Martín, D., Morales, L. M., Martínez-Ramírez, S. Infrared spectroscopy in the analysis of building and construction materials. In: Infrared Spectroscopy – Materials Science, Engineering and Technology (Theophanides, T., ed.), InTech, Rijeka, Croatia, 2012, 369–382.
https://doi.org/10.5772/36186

10. Lodeiro, I. G., Macphee, D. E., Palomo, A., Fernandez-Jimenez, A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement Concrete Res., 2009, 39(3), 147–153.
https://doi.org/10.1016/j.cemconres.2009.01.003

11. Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., Cong, X. D. Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc., 1999, 82(3), 742–748.
https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

12. Rees, C. A., Provis, J. L., Lukey, G. C., van Deventer, J. S. J. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir, 2007, 23(17), 9076–9082.
https://doi.org/10.1021/la701185g

13. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc., 2006, 26(16), 3789–3797.
https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

14. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic trans­forma­tion and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1–3), 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073

15. Paaver, P., Paiste, P., Kirsimäe, K. Geopolymeric potential of the Estonian oil shale solid residues: Petroter solid heat carrier retorting ash. Oil Shale, 2016, 33(4), 373–392.
https://doi.org/10.3176/oil.2016.4.05

16. Talviste, P., Sedman, A., Mõtlep, R., Kirsimäe, K. Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Manage. Res., 2013, 31(6), 641–647.
https://doi.org/10.1177/0734242X13482033

17. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
https://doi.org/10.3176/oil.2010.4.07

18. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: Formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
https://doi.org/10.3176/oil.2012.4.08

19. Uibu, M., Somelar, P., Raado, L.-M., Irha, N., Hain, T., Koroljova, A., Kuu­sik, R. Oil shale ash based backfilling concrete – strength development, mineral transformations and leachability. Constr. Build. Mater., 2016, 102, Part 1, 620–630.
https://doi.org/10.1016/j.conbuildmat.2015.10.197

20. Mindess, S., Young, J. F., Darwin, D. Concrete. 2nd ed. Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ, 2003.

21. Sedman, A., Talviste, P., Kirsimäe, K. The study of hydration and carbonation reactions and corresponding changes in the physical properties of co-deposited oil shale ash and semicoke wastes in a small-scale field experiment. Oil Shale, 2012, 29(3), 279–294.
https://doi.org/10.3176/oil.2012.3.07

22. Sedman, A., Talviste, P., Mõtlep, R., Jõeleht, A., Kirsimäe, K. Geotechnical characterization of Estonian oil shale semi-coke deposits with prime emphasis on their shear strength. Eng. Geol., 2012, 131–132, 37–44.
https://doi.org/10.1016/j.enggeo.2012.02.002

23. Anthony, E. J., Bulewicz, E. M., Dudek, K., Kozak, A. The long term behaviour of CFBC ash-water systems. Waste Manage., 2002, 22(1), 99–111.
https://doi.org/10.1016/S0956-053X(01)00059-9

24. Raado, L.-M., Hain, T., Liisma, E., Kuusik, R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160.
https://doi.org/10.3176/oil.2014.2.05

25. Provis, J. L., Bernal, S. A. Alkali–activated binders – chemistry and engineer­ing. Rilem Proc., 2014, 92, 299–327.

26. Clark, B. A., Brown, P. W. Formation of ettringite from monosubstituted calcium sulfoaluminate hydrate and gypsum. J. Am. Ceram. Soc., 1999, 82(10), 2900–2905.
https://doi.org/10.1111/j.1151-2916.1999.tb02174.x

27. Guo, X. L., Shi, H. S., Chen, L. M., Dick, W. A. Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J. Hazard. Mater., 2010, 173(1–3), 480–486.
https://doi.org/10.1016/j.jhazmat.2009.08.110

28. Guo, X. L., Shi, H. S., Dick, W. A. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concrete Comp., 2010, 32(2), 142–147.
https://doi.org/10.1016/j.cemconcomp.2009.11.003

29. Mijarsh, M. J. A., Johari, M. A. M., Ahmad, Z. A. Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA. Constr. Build. Mater., 2015, 86, 64–74.
https://doi.org/10.1016/j.conbuildmat.2015.03.078

30. Van Deventer, J. S. J., Provis, J. L., Duxson, P., Lukey, G. C. Reaction mecha­nisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater., 2007, 139(3), 506–513.
https://doi.org/10.1016/j.jhazmat.2006.02.044

31. Aughenbaugh, K. L., Stutzman, P., Juenger, M. C. G. Assessment of the glassy phase reactivity in fly ashes used for geopolymer cements. In: Geopolymer Binder Systems (Struble, L., Hicks, J. K., eds.), Selected Technical Papers STP, 1566, 2013, ASTM International, West Conshohocken, PA, 2013, 11–20.
https://doi.org/10.1520/STP156620120105

32. Provis, J. L., Palomo, A., Shi, C. J. Advances in understanding alkali-activated materials. Cement Concrete Res., 2015, 78, Part A, 110–125.

Back to Issue