The composition and cementitious properties upon hydration and alkali activation of the solid heat carrier (SHC) ash produced in a new Enefit280 retort was studied. The Enefit280 waste heat boiler (WHB) ash is different from other SHC solid residues. It does not contain residual organics, but is characterized by a low content of reactive Ca-phases and the soluble amorphous (aluminium)-silicate phase/glass material. Cementation of Enefit280 ash upon hydration with plain water is limited and its uniaxial compressive strength stays < 4 MPa after 28 days of curing. Ash mixtures activated with sodium silicate based mixtures show higher compressive strength values, reaching > 10 MPa after 28 days of curing. The Enefit280 ash, compared to other ash types forming in the Estonian oil shale processing industry, has significantly poorer self-cementing properties. This needs to be taken into account when designing waste depositories, if other types of ash with better self-cementing properties are not co-deposited with this ash.
1. Liive, S. Oil shale energetics in Estonia. Oil Shale, 2007, 24(1), 1–4.
2. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda, Tallinn, 2006.
3. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.
4. Mõtlep, R., Kirsimäe, K., Talviste, P., Puura, E., Jürgenson, J. Mineral composition of Estonian oil shale semi-coke sediments. Oil Shale, 2007, 24(3), 405–422.
5. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3), 324–332.
6. Veiderma, M. Estonian oil shale – Resources and usage. Oil Shale, 2003, 20(3S), 295–303.
7. Aarna, I. Developments in production of synthetic fuels out of Estonian oil shale. Energ. Environ., 2011, 22(5), 541–552.
https://doi.org/10.1260/0958-305X.22.5.541
8. Garcia-Lodeiro, I., Fernandez-Jimenez, A., Blanco, M. T., Palomo, A. FTIR study of the sol-gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Techn., 2008, 45(1), 63–72.
9. Fernández-Carrasco, L., Torrens-Martín, D., Morales, L. M., Martínez-Ramírez, S. Infrared spectroscopy in the analysis of building and construction materials. In: Infrared Spectroscopy – Materials Science, Engineering and Technology (Theophanides, T., ed.), InTech, Rijeka, Croatia, 2012, 369–382.
https://doi.org/10.5772/36186
10. Lodeiro, I. G., Macphee, D. E., Palomo, A., Fernandez-Jimenez, A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement Concrete Res., 2009, 39(3), 147–153.
https://doi.org/10.1016/j.cemconres.2009.01.003
11. Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., Cong, X. D. Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc., 1999, 82(3), 742–748.
https://doi.org/10.1111/j.1151-2916.1999.tb01826.x
12. Rees, C. A., Provis, J. L., Lukey, G. C., van Deventer, J. S. J. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir, 2007, 23(17), 9076–9082.
https://doi.org/10.1021/la701185g
13. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc., 2006, 26(16), 3789–3797.
https://doi.org/10.1016/j.jeurceramsoc.2005.12.021
14. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1–3), 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073
15. Paaver, P., Paiste, P., Kirsimäe, K. Geopolymeric potential of the Estonian oil shale solid residues: Petroter solid heat carrier retorting ash. Oil Shale, 2016, 33(4), 373–392.
https://doi.org/10.3176/oil.2016.4.05
16. Talviste, P., Sedman, A., Mõtlep, R., Kirsimäe, K. Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Manage. Res., 2013, 31(6), 641–647.
https://doi.org/10.1177/0734242X13482033
17. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
https://doi.org/10.3176/oil.2010.4.07
18. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: Formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
https://doi.org/10.3176/oil.2012.4.08
19. Uibu, M., Somelar, P., Raado, L.-M., Irha, N., Hain, T., Koroljova, A., Kuusik, R. Oil shale ash based backfilling concrete – strength development, mineral transformations and leachability. Constr. Build. Mater., 2016, 102, Part 1, 620–630.
https://doi.org/10.1016/j.conbuildmat.2015.10.197
20. Mindess, S., Young, J. F., Darwin, D. Concrete. 2nd ed. Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ, 2003.
21. Sedman, A., Talviste, P., Kirsimäe, K. The study of hydration and carbonation reactions and corresponding changes in the physical properties of co-deposited oil shale ash and semicoke wastes in a small-scale field experiment. Oil Shale, 2012, 29(3), 279–294.
https://doi.org/10.3176/oil.2012.3.07
22. Sedman, A., Talviste, P., Mõtlep, R., Jõeleht, A., Kirsimäe, K. Geotechnical characterization of Estonian oil shale semi-coke deposits with prime emphasis on their shear strength. Eng. Geol., 2012, 131–132, 37–44.
https://doi.org/10.1016/j.enggeo.2012.02.002
23. Anthony, E. J., Bulewicz, E. M., Dudek, K., Kozak, A. The long term behaviour of CFBC ash-water systems. Waste Manage., 2002, 22(1), 99–111.
https://doi.org/10.1016/S0956-053X(01)00059-9
24. Raado, L.-M., Hain, T., Liisma, E., Kuusik, R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160.
https://doi.org/10.3176/oil.2014.2.05
25. Provis, J. L., Bernal, S. A. Alkali–activated binders – chemistry and engineering. Rilem Proc., 2014, 92, 299–327.
26. Clark, B. A., Brown, P. W. Formation of ettringite from monosubstituted calcium sulfoaluminate hydrate and gypsum. J. Am. Ceram. Soc., 1999, 82(10), 2900–2905.
https://doi.org/10.1111/j.1151-2916.1999.tb02174.x
27. Guo, X. L., Shi, H. S., Chen, L. M., Dick, W. A. Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J. Hazard. Mater., 2010, 173(1–3), 480–486.
https://doi.org/10.1016/j.jhazmat.2009.08.110
28. Guo, X. L., Shi, H. S., Dick, W. A. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concrete Comp., 2010, 32(2), 142–147.
https://doi.org/10.1016/j.cemconcomp.2009.11.003
29. Mijarsh, M. J. A., Johari, M. A. M., Ahmad, Z. A. Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA. Constr. Build. Mater., 2015, 86, 64–74.
https://doi.org/10.1016/j.conbuildmat.2015.03.078
30. Van Deventer, J. S. J., Provis, J. L., Duxson, P., Lukey, G. C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater., 2007, 139(3), 506–513.
https://doi.org/10.1016/j.jhazmat.2006.02.044
31. Aughenbaugh, K. L., Stutzman, P., Juenger, M. C. G. Assessment of the glassy phase reactivity in fly ashes used for geopolymer cements. In: Geopolymer Binder Systems (Struble, L., Hicks, J. K., eds.), Selected Technical Papers STP, 1566, 2013, ASTM International, West Conshohocken, PA, 2013, 11–20.
https://doi.org/10.1520/STP156620120105
32. Provis, J. L., Palomo, A., Shi, C. J. Advances in understanding alkali-activated materials. Cement Concrete Res., 2015, 78, Part A, 110–125.