ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
ORGANIC NITROGEN CONVERSION DURING THE THERMAL DECOMPOSITION OF HUADIAN OIL SHALE OF CHINA; pp. 97–109
PDF | https//doi.org/10.3176/oil.2017.2.01

Authors
Xiangxin Han, BIN CHEN, QINGYOU LI, Jianhui Tong, Xiumin Jiang
Abstract

Organic nitrogen plays an adverse role in the utilization of oil shale, deactivating catalysts in the shale oil refining process and forming NOX in the combustion of oil shale and shale oil. To have a deep under­standing of its thermochemical transformation during the decomposi­tion of oil shale, the conversion of organic nitrogen is experimentally studied and a set of physical models of nitrogen-containing groups is constructed and solved using the quantum chemical transition state theory (TST) in the Gaussian 09, Revision A.02 package. The results obtained show that three principal nitrogen-containing species – pyrrolic nitrogen, pyridinic nitrogen and amino nitrogen – first crack to nitriles or amino species from the breakup of the C–N bond, and then to HCN and NH3. If attacked by oxygen-con­tain­ing groups, the nitrogen-containing products formed can be further con­verted into NOX. Including also quaternary and chemisorbed NOX in the study, the conversion history of five typical nitrogen-containing groups present in oil shale kerogen is summarized and illustrated.

References

 1.       Mitra-Kirtley, S., Mullins, O. C., Branthaver, J. F., Cramer, S. P. Nitrogen chemistry of kerogens and bitumens from X-ray absorption near-edge structure spectroscopy. Energ. Fuel., 1993, 7(6), 1128–1134.
https://doi.org/10.1021/ef00042a062

2.       Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Kwiatek, P. J., Solum, M. S., Hu, J. Z., Pugmire, R. J. XPS and 15N NMR study of nitrogen forms in carbonaceous solids. Energ. Fuel., 2002, 16(6), 1507–1515.
https://doi.org/10.1021/ef0200828

3.       Tong, J. H., Han, X. X., Wang, S., Jiang, X. M. Evaluation of structural cha­racteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energ. Fuel., 2011, 25(9), 4006–4013.
https://doi.org/10.1021/ef200738p

4.       Li, Q. Y., Han, X. X., Liu, Q. Q., Jiang, X. M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates. Fuel, 2014, 121, 109–116.
https://doi.org/10.1016/j.fuel.2013.12.046

5.       Tong, J. H., Liu, J. G., Han, X. X., Wang, S., Jiang, X. M. Characterization of nitrogen-containing species in Huadian shale oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2013, 104, 365–371.
https://doi.org/10.1016/j.fuel.2012.09.042

6.       Han, X. X., Jiang, X. M., Cui, Z.G., Liu, J. G., Yan, J. W. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters. J. Hazard. Mater., 2010, 175(1–3), 445–451.
https://doi.org/10.1016/j.jhazmat.2009.10.026

7.       Tong, J. H., Jiang, X. M., Han, X. X., Wang, X. Y. Evaluation of the macro­molecular structure of Huadian oil shale kerogen using molecular modeling. Fuel, 2016, 181, 330–339.
https://doi.org/10.1016/j.fuel.2016.04.139

8.       Oh, M. S., Taylor, R. W., Coburn, T. T., Crawford, R. W. Ammonia evolution during oil shale pyrolysis. Energ. Fuel., 1988, 2(1), 100–105.
https://doi.org/10.1021/ef00007a015

9.       Zhai, L., Zhou, X. F., Liu, R. F. A theoretical study of pyrolysis mechanisms of pyrrole. J. Phys. Chem., 1999, 103(20), 3917–3922.
https://doi.org/10.1021/jp9841790

10.    Ling, L. X., Zhang, R. G., Wang, B. J., Xie, K. C. Pyrolysis mechanisms of quinoline and isoquinoline with density functional theory. Chinese J. Chem. Eng., 2009, 17(5), 805–813.
https://doi.org/10.1016/S1004-9541(08)60280-3

11.    Ninomiya, Y., Dong, Z. B., Suzuki, Y., Koketsu, J. Theoretical study on the thermal decomposition of pyridine. Fuel, 2000, 79(3–4), 449–457.
https://doi.org/10.1016/S0016-2361(99)00180-5

12.    Wójtowicz, M. A., Pels, J. R., Moulijn, J. A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel, 1995, 74(4), 507–516.
https://doi.org/10.1016/0016-2361(95)98352-F

13.    Zhang, Z. X., Hang, T. J., Yuan, Y. Z. Spectral Analysis of Organics. People’s Medical Publishing Press, Beijing, 2009 (in Chinese).

14.    Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 1993, 98(2), 1372–1377.
https://doi.org/10.1063/1.464304

15.    Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2), 785–789.
https://doi.org/10.1103/PhysRevB.37.785

16.    Miehlich, B., Savin, A., Stoll, H., Preuss, H. Results obtained with the correla­tion energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200–206.
https://doi.org/10.1016/0009-2614(89)87234-3

17.    Perry, S. T., Hambly, E. M., Fletcher, T. H., Solum, M. S., Pugmire, R. J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. P. Combust. Inst., 2000, 28(2), 2313–2319.
https://doi.org/10.1016/S0082-0784(00)80642-6

18.    García, P., Espinal, J. F., Martinez de Lecea, C. S., Mondragón, F. Experimental characterization and molecular simulation of nitrogen complexes formed upon NO-char reaction at 270 °C in the presence of H2O and O2. Carbon, 2004, 42(8–9), 1507–1515.
https://doi.org/10.1016/j.carbon.2004.01.065

19.    Foresman, J. B., Frisch, AE. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, 2nd Ed. Gaussian, 1996.

20.    Qiu, L., Xiao, H. M., Ju, X. H., Gong, X. D. Theoretical study on the structures and properties of bicyclo-HMX. Acta Chim. Sinica, 2005, 63(5), 377–384.

21.    Aho, M. A., Hämäläinen, J. P., Tummavuori, J. L. Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800 °C. Fuel, 1993, 72(6), 837–841.
https://doi.org/10.1016/0016-2361(93)90088-J

22.    Yuan, S., Li, J., Zhou, Z. J., Wang, F. C. Mechanisms of HCN and NH3 forma­tion during rapid pyrolysis of pyridinic nitrogen containing substances. J. Fuel Chem. Technol., 2011, 39(6), 413–418 (in Chinese with English abstract).

23.    Kambara, S., Takarada, T., Toyoshima, M., Kato, K. Relation between func­tional forms of coal nitrogen and NOx emissions from pulverized coal com­bustion. Fuel, 1995, 74(9), 1247–1253.
https://doi.org/10.1016/0016-2361(95)00090-R

24.    Ogunsola, O. M. Decomposition of isoquinoline and quinoline by supercritical water. J. Hazard. Mater., 2000, 74(3), 187–195.
https://doi.org/10.1016/S0304-3894(00)00162-X

25.    Li, C. Z., Tan, L. L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel, 2000, 79(15), 1899–1906.
https://doi.org/10.1016/S0016-2361(00)00008-9

Evans, R. J., Batts, B. D., Cant, N. W., Smith, J. W. The origin of nitriles in shale oil. Org. Geochem., 1985.
https://doi.org/10.1016/0146-6380(85)90015-4

Back to Issue