A combined technological scheme for purification of undiluted high-strength wastewater produced in the shale oil industry was proposed. The initial values of chemical oxygen demand (COD), biological oxygen demand (BOD7) and phenols in the studied pyrogenic wastewater samples were up to 45, 35 and 1 g/L, respectively. Furthermore, the wastewater had a high toxicity to indicator organism Daphnia Magna (EC50 = 0.34%) and caused inhibition of oxygen uptake rate (IC50 = 3.4%) and nitrification rate (IC50 = 0.7%) in activated sludge treatment. The combination of air stripping, coagulation-flocculation, batch distillation, activated sludge and the Fenton oxidation processes reduced all measured parameters more than 95%. Consequently, a treatment scheme applicable to pyrogenic wastewater was developed.
1. Boak, J. Shale Oil Production from Oil Shale: Where? How Soon? How Much? How Risky? Presentation at International Oil Shale Symposium. Tallinn, Estonia, June 10–11, 2013.
2. Warwick, D. P., Hackley, P. C. Unconventional Energy Resources: 2013 Review. Natural Resources Research, 2014, 23(1), 19–98.
https://doi.org/10.1007/s11053-013-9224-6
3. Ots, A., Poobus, A., Lausmaa, T. Technical and ecological aspects of shale oil and power cogeneration. Oil Shale, 2011, 28(1S), 101–112.
https://doi.org/10.3176/oil.2011.1S.03
4. Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E., Leppänen, M. Characterization of water extracts of oil shale retorting residues form gaseous and solid heat carrier processes. Fuel Process. Technol., 2015, 131, 443–451.
https://doi.org/10.1016/j.fuproc.2014.12.024
5. Gerasimov, G., Volkov, E. Modeling study of oil shale pyrolysis in rotary drum reactor by solid heat carrier. Fuel Process. Technol., 2015, 139, 108–116.
https://doi.org/10.1016/j.fuproc.2015.08.001
6. Joa, K., Panova, E., Irha, N., Teinemaa, E., Lintelmann, J., Kirso, U. Determination of polycyclic aromatic hydrocarbons (PAHs) in oil shale processing wastes: current practice and new trends. Oil Shale, 2009, 26(1), 59–72.
https://doi.org/10.3176/oil.2009.1.07
7. Kekisheva, L., Smirnov, I., Ostroukhov, N., Petrovich, N., Sitnik, V., Riisalu, H., Soone, Yu. The influence of phenols and other compounds on chemical oxygen demand (COD) of phenolic waters from the Kiviter process. Oil Shale, 2007, 24(4), 573–581.
8. Chen, H. L., Yao, J., Wang, L., Wang, F., Bramanti, E., Maskow, T., Zaray, G. Evaluation of solvent tolerance of microorganisms by microcalorimetry. Chemosphere, 2009, 74(10), 1407–1411.
https://doi.org/10.1016/j.chemosphere.2008.11.005
9. Amer, M. W., Fei, Y., Marshall, M., Jackson, W. R., Gorbaty, M., Chaffee, A. L. Recovery of shale oil condensate from different oil shales using a flow-through apparatus. Fuel Process. Technol., 2015, 133, 167–172.
https://doi.org/10.1016/j.fuproc.2015.01.009
10. Badawy, M. I., Wahaab, R. A., El-Kalliny, A. S. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J. Hazard. Mater., 2009, 167(1–3), 567–574.
https://doi.org/10.1016/j.jhazmat.2009.01.023
11. Klauson, D., Klein, K., Kivi, A., Kattel, E., Viisimaa, M., Dulova, N., Velling, S., Trapido, M., Tenno, T. Combined methods for the treatment of a typical hardwood soaking basin wastewater from plywood industry. Int. J. Environ. Sci. Technol., 2015, 12(11), 3575–3586.
https://doi.org/10.1007/s13762-015-0777-2
12. Qu, X., Tian, M., Liao, B., Chen, A. Enhanced electrochemical treatment of phenolic pollutants by an effective adsorption and release process. Electrochim. Acta, 2010, 55(19), 5367–5374.
https://doi.org/10.1016/j.electacta.2010.04.089
13. Du, X., Zhang, R., Gan, Z., Bi, J. Treatment of high strength coking wastewater by supercritical water oxidation. Fuel, 2013, 104, 77–82.
https://doi.org/10.1016/j.fuel.2010.09.018
14. Kamenev, I., Munter, R., Pikkov, L., Kekisheva, L. Wastewater treatment in oil shale chemical industry. Oil Shale, 2003, 20(4), 443–457.
15. Kavitha, V., Palanivelu, K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 2004, 55(9), 1235–1243.
https://doi.org/10.1016/j.chemosphere.2003.12.022
16. Ballesteros Martín, M. M., Casas López, J. L., Oller, I., Malato, S., Sánchez Pérez, J. A. A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotox. Environ. Safe., 2010, 73(6), 1189–1195.
https://doi.org/10.1016/j.ecoenv.2010.07.021
17. Fernández, F. J., Castro, M. C., Rodrigo, M. A., Cañizares, P. Reduction of aeration costs by tuning a multi-set point on/off controller: A case study. Control Eng. Pract., 2011, 19(10), 1231–1237.
https://doi.org/10.1016/j.conengprac.2011.07.003
18. Campo, M. E., Romero, R., Roa, G., Peralta-Reyes, E., Espino-Valencia, J., Natividad, R. Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC. Fuel, 2014, 138, 149–155.
https://doi.org/10.1016/j.fuel.2014.06.014
19. Dulov, A., Dulova, N., Trapido, M. Combined physicochemical treatment of textile and mixed industrial wastewater. Ozone Sci. Eng., 2011, 33(4), 285–293.
https://doi.org/10.1080/01919512.2011.583136
20. Gotvajn, A. Z., Tisler, T., Zagorc-Koncan, J. Comparison of different treatment strategies for industrial landfill leachate. J. Hazard. Mater., 2009, 162(2–3), 1446–1456.
https://doi.org/10.1016/j.jhazmat.2008.06.037
21. Ozyonar, F., Karagozoglu, B., Kobya, M. Air stripping of ammonia from coke wastewater. JESTECH, 2012, 15(2), 85–91.
22. ISO-7150-1:1984. Water quality – Determination of ammonium – Part 1: Manual spectrometric method, 1984.
23. APHA. Standard Methods for the Examination of Water and Wastewater. 22nd ed. Washington DC, USA. American Water Works Association, Water Environment Federation, 2012.
24. Eisenberg, G. M. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed., 1943, 15(5), 327–328.
https://doi.org/10.1021/i560117a011
25. EN. The European Standard 1484. Water analysis – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Brussels, European Committee of Standardization, 1997.
26. ISO-6341:2012. Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) – Acute toxicity test. Geneva, 2012.
27. ISO-9888:1999. Water quality – Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium – Static test (Zahn-Wellens method), 1999.
28. ISO-8192:1989. Water quality – Method for assessing the inhibition of nitrification of activated sludge micro-organisms by chemicals and waste waters, 1989.
29. ISO-9509:2006. Water quality – Toxicity test for assessing the inhibition of nitrification of activated sludge microorganisms, 2006.
30. Dulova, N., Trapido, M. Application of Fenton’s reaction for food-processing wastewater treatment. J. Adv. Oxid. Technol., 2011, 14(1), 9–16.
https://doi.org/10.1515/jaots-2011-0101
31. Domínguez, J. R., Muñoz, M. J., Palo, P., González, T., Peres, J. A., Cuerda-Correa, E. M. Fenton advanced oxidation of emerging pollutants: parabens. Int. J. Energy Environ. Eng., 2014, 5, 1–10.
https://doi.org/10.1007/s40095-014-0089-1
32. Tao, W., Ukwuani, A. T. Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: Ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content. Chem. Eng. J., 2015, 280, 188–196.
https://doi.org/10.1016/j.cej.2015.05.119