Oil shales from the Yamalikeshan (YML), Shuimogou (SMG) and Sangonghe (SGH) sections of the Lucaogou Formation in the southeastern Junggar Basin, Northwest China are rich in organic matter and have high hydrocarbon generation potential, as shown by bulk Rock-Eval and chloroform extract analyses. The contrast in organic composition between the oil shales implies that Sangonghe is the richest hydrocarbon source rock section in the studied area in the Junggar Basin. The distribution of biomarkers and organic carbon isotope parameters indicate that oil shales of the Lucaogou Formation were deposited in a cool and humid paleoclimate and that some layers were partly subjected to microbial modification. In addition, the Sangonghe oil shale suggested a strongly reducing depositional environment, deeper and higher-salinity lake waters and a higher input of lower aquatic organisms compared with oil shales of the other two sections. Therefore we conclude that brackish reducing deep lakes were favourable for the development of petroleum source rocks. Ketones and aldehydes were identified in two Yamalikeshan oil shale samples, while ketones and fatty acid methyl esters (FAMEs) were found in the other two samples from the same section. In none of the samples the co-existence of all three compounds was established. The unique occurrence of aldehydes and fatty acid methyl esters may imply the varying depositional environment of the Yamalikeshan section.
1. Hu, H. Investigation Report of Oil Shale in Northern Bogda Mountain. Xinjiang Geological Survey, 1955 (in Chinese).
2. Graham, S. A., Brassell, S., Carroll, A. R., Xiao, X., Demaison, G., Mcknight, C. L., Liang, Y., Chu, J., Hendrix, M. S. Characteristics of selected petroleum source rocks, Xianjiang Uygur Autonomous Region, Northwest China. AAPG Bull., 1990, 74(4), 493–512.
3. Demaison, G., Huizinga, B. J. Genetic classification of petroleum systems. AAPG Bull., 1991, 75(10), 1626–1643.
4. Carroll, A. R., Brassell, S. C., Graham, S. A. Upper Permian Lacustrine oil shales, southern Junggar Basin, Northwest China. AAPG Bull., 1992, 76(12), 1874–1902.
5. Li, J. The Study on Geochemical Characteristics of Lucaogou Formation Oil Shale at the Northern Foot of Bogda Mountain. China University of Geosciences for Doctoral Degree, 2009, 17–31 (in Chinese with English abstract).
6. Tao, S., Wang, Y., Tang, D., Xu, H., Zhang, B., He, W., Liu, C. Composition of the organic constituents of Dahuangshan oil shale at the northern foot of Bogda Mountain, China. Oil Shale, 2012, 29(2), 115–127.
https://doi.org/10.3176/oil.2012.2.03
7. Wang, D., Tang, D., Gou, M., Wang, F., Tao, S., Gao, G. Oil-shale geology of Lucaogou Formation in Fukang area on southern margin of Junggar Basin. China Petroleum Exploration, 2007, 12(6), 18–22, 71–72 (in Chinese with English abstract).
8. Wang, D., Xu, H., Li, J., Tao, S., Zhou, C., Gao, G. Analysis on the oil shale geochemical characteristics and sedimentary environments of Lucaogou Formation in Dahuangshan area. Inner Mongolia Petrochemical Industry, 2008, 34(3), 62–65 (in Chinese with English abstract).
9. Li, C., Guo, W., Song, Y., Du, J. The genetic type of the oil shale at the northern foot of Bogda Mountain, Xinjiang and prediction for favorable areas. Journal of Jilin University: Earth Science Edition, 2006, 36(6), 950–953 (in Chinese with English abstract).
10. Bai, Y. Prospects for development of oil shale deposits in southeastern margin of Junggar Basin. Xinjiang Petroleum Geology, 2008, 29(4), 462–465 (in Chinese with English abstract).
11. Li, J., Dong, D., Chen, G. Prospects and strategic position of shale gas resources in China. Natural Gas Industry, 2009, 29(5), 11–16 (in Chinese with English abstract).
12. Li, J., Tao, S., Liu, X. Element geochemical characteristics and implications on sedimentary environments of southern Bogda Mountain oil shale. Clean Coal Technology, 2012(1), 102–112 (in Chinese with English abstract).
13. Peng, X., Wang, L., Jiang, L. Analysis of sedimentary environment of the Permian Lucaogou Formation in southeastern margin of the Junggar Basin. Journal of Xinjiang University: Natural Science Edition, 2011, 28(4), 395–400 (in Chinese with English abstract).
14. Carroll, A. R. Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China. Org. Geochem., 1998, 28(11), 649–667.
https://doi.org/10.1016/S0146-6380(98)00040-0
15. Song, C. Sedimentary System and Sedimentary Features of Central Junggar Basin. Geological Publishing House, Beijing, 2006 (in Chinese with English abstract).
16. Carroll, A. R., Graham, S. A., Smith, M. E. Walled sedimentary basins of China. Basin Res., 2010, 22(1), 17–32.
https://doi.org/10.1111/j.1365-2117.2009.00458.x
17. XBGMR. Geological Map (scale 1:200000), Urumqi sheet (k-45-4), 1965.
18. Choulet, F., Chen, Y., Wang, B., Faure, M., Cluzel, D., Charvet, J., Lin, W., Xu, B. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. J. Asian Earth Sci., 2011, 42(5), 867–884.
https://doi.org/10.1016/j.jseaes.2010.07.011
19. Wu, Q. Structural evolution and prospects of Junggar basin. Xinjiang Geology, 1986, 4(3), 1–19 (in Chinese with English abstract).
20. Wartes, M. A., Carrol, A. R., Greene, T. J. Permian sedimentary record of the Turpan-Hami basin and adjacent regions, northwest China: Constraints on postamalgamation tectonic evolution. Geol. Soc. Am. Bull., 2002, 114(2), 131–152.
https://doi.org/10.1130/0016-7606(2002)114<0131:PSROTT>2.0.CO;2
21. Yang, X., He, D., Wang, Q., Tang, Y. Tectonostratigraphic evolution of the Carboniferous arc-related basin in the East Junggar Basin, northwest China: Insights into its link with the subduction process. Gondwana Res., 2012, 22(3–4), 1030–1046.
https://doi.org/10.1016/j.gr.2012.02.009
22. Fang, S., Jia, C., Guo, Z., Song, Y., Xu, H., Liu, L. New view on the Permian evolution of the Junggar Basin and its implications for tectonic evolution. Earth Science Frontiers, 2006, 13(3), 108–121 (in Chinese with English abstract).
23. Tang, W., Zhang, Z., Li, J., Li, K., Chen, Y., Guo, Z. Late Paleozoic to Jurassic tectonic evolution of the Bogda area (northwest China): Evidence from detrital zircon U–Pb geochronology. Tectonophysics, 2014, 626, 144–156.
https://doi.org/10.1016/j.tecto.2014.04.005
24. Zhao, B. Nature of basement of Junggar Basin. Xinjiang Petroleum Geology, 1992, 13(2), 95–99 (in Chinese with English abstract).
25. Sun, Z., Shen, J. Bogda nappe structure and its relations to hydrocarbon in Xinjiang. Petroleum Geology & Experiment, 2014, 36(4), 429–434 (in Chinese with English abstract).
26. Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. Trace metals as palaeoredox and paleoproductivity proxies: an update. Chem. Geol., 2006, 232(1–2), 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012
27. Alkhafaji, M. W., Aljubouri, Z. A., Aldobouni, I. A. Depositional environment of the Lower Silurian Akkas hot shales in the Western Desert of Iraq: Results from an organic geochemical study. Mar. Petrol. Geol., 2015, 64, 294–303.
https://doi.org/10.1016/j.marpetgeo.2015.02.012
28. Liu, X., Wang, N. Fish Fossil of Late Permian in Junggar Basin. Science Press, Beijing, 1978, 1–18 (in Chinese).
29. Di, G. Petroleum Geology of China. Volume 15. Hydrocarbon generation area in Xinjiang. Petroleum Industry Press, Beijing, 1993, 65 (in Chinese).
30. Liu, S. Middle Permian conchostracans in Xinjiang. Acta Palaeontologica Sinica, 2000, 40(1), 61–66 (in Chinese with English abstract).
31. Jiao, Y., Wu, L., He, M., Maison, R., Wang, M., Xu, Z. Occurrence, thermal evolution and primary migration processes derived from studies of organic matter in the Lucaogou source rock at the southern margin of the Junggar Basin, NW China. Sci. China Ser. D-Earth Sci., 2007, 50(Supplement 2), 114–123.
32. Mukhopadhyay, P. K., Wade, J. A., Kruge, M. A. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., 1995, 22(1), 85–104.
https://doi.org/10.1016/0146-6380(95)90010-1
33. Espitalié, J., Madec, M., Tissot, B., Mennig, J., Leplat, P. Source rock characterization method for petroleum exploration. In: Proceedings of the 9th Offshore Technology Conference, May 2–5, Houston, Texas, 1977, 439–444.
https://doi.org/10.4043/2935-MS
34. Langford, F. F., Blanc-Valleron, M.-M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull., 1990, 74(6), 799–804.
35. Dembicki, H. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull., 2009, 93(3), 341–356.
https://doi.org/10.1306/10230808076
36. He, D., Chen, X., Zhang, Y., Kuang, J., Shi, X., Zhang, L. Enrichment characteristics of oil and gas in Junggar Basin. Acta Petrolei Sinica, 2004, 25(3), 1–10 (in Chinese with English abstract).
37. Hou, D., Feng, Z. Petroleum Geochemistry. China University of Geoscience Press, Wuhan, 2011, 178–243 (in Chinese).
38. Gelpi, E., Schneider, H., Mann, J., Oró, J. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 1970, 9(3), 603–612.
https://doi.org/10.1016/S0031-9422(00)85700-3
39. Wang, Y., Fang, X., Zhang, T., Li, Y., Wu, Y., He, D., Wang, Y. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change. Appl. Geochem., 2010, 25(10), 1478–1486.
https://doi.org/10.1016/j.apgeochem.2010.07.002
40. Moldowan, J. M., Seifert, W. K., Gallegos, E. J. Relationship between petroleum composition and depositional environment of petroleum source rock. AAPG Bull., 1985, 69(8), 1255–1268.
41. Ficken, K. J., Li, B., Swain, D. L., Eglinton, G. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem., 2000, 31(7–8), 745–749.
https://doi.org/10.1016/S0146-6380(00)00081-4
42. Sachsenhofer, R. F., Bechtel, A., Kuffner, T., Rainer, T., Gratzer, R., Sauer, R., Sperl, H. Depositional environment and source potential of Jurassic coal-bearing sediments (Gresten Formation, Hoflein gas/condensate field, Austria). Petrol. Geosci., 2006, 12(2), 99–114.
https://doi.org/10.1144/1354-079305-684
43. Riboulleau, A., Schnyder, J., Riquier, L., Lefebvre, V., Baudin, F., Deconinck, J.-F. Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): A biomarker approach. Org. Geochem., 2007, 38(11), 1804–1823.
https://doi.org/10.1016/j.orggeochem.2007.07.006
44. Xie, S., Yao, T., Kang,S., Duan, K., Xu, B., Thompson, L. G. Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabangma in Qinghai-Tibetan Plateau. Sci. China Ser. D-Earth Sci. 1999, 42(4), 383–391.
45. Xie, S., Evershed, R. P. Peat molecular fossils recording paleoclimatic change and organism replacement. Chin. Sci. Bull., 2001, 46(20), 1749–1752.
https://doi.org/10.1007/BF02900666
46. Xie, S., Yi, Y., Liu, Y., Gu, Y., Ma, Z., Lin, W., Wang, X., Liu, G., Liang, B., Zhu, Z. The Pleistocene vermicular red earth in South China signaling the global climatic change: The molecular fossil record. Sci. China Ser. D-Earth Sci, 2003, 46(11), 1113–1120.
https://doi.org/10.1360/02yd0555
47. Wang, Z., Liu, Z., Yi, Y., Xie, S. Features of lipids and their implications in modern soils from various climate vegetation gions. Acta Pedologica Sinica, 2003, 40(6), 967–970 (in Chinese with English abstract).
48. Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bull., 1985, 69(8), 1241–1254.
https://doi.org/10.1306/ad462bc3-16f7-11d7-8645000102c1865d
49. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, 2005, 483–625.
50. Ten Haven, H. L., Rohmer, M., Rullkötter, J., Bisseret, P. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim. Cosmochim. Ac., 1989, 53(11), 3073–3079.
https://doi.org/10.1016/0016-7037(89)90186-5
51. Connan, J. Molecular geochemistry in oil exploration. In: Applied Petroleum Geochemistry (Bordenave, M. L., ed.), Editions Technip, Paris, 1993, 175–204.
52. Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., De Leeuw, J. W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Ac., 1995, 59(9), 1895–1900.
https://doi.org/10.1016/0016-7037(95)00073-9
53. Seifert, W. K., Moldowan, J. M., Jones, R. W. Application of biological marker chemistry to petroleum exploration. In: Proceedings of the Tenth World Petroleum Congress, 9–14 September 1979, Bucharest, Romania. World Petroleum Congress, 1980, SP8.
54. Mackenizie, A. S., Beaumont, C., McKenzie, D. P. Estimation of the kinetics of geochemical reactions with geophysical models of sedimentary basins and applications. Org. Geochem., 1984, 6, 875–884.
https://doi.org/10.1016/0146-6380(84)90110-4
55. Seifert, W. K., Moldowan, J. M., Smith, G. W., Whitehead, E. W. First proof of structure of a C28-pentacyclic triterpane in petroleum. Nature, 1978, 271(5644), 436–437.
https://doi.org/10.1038/271436a0
56. Kong, Q., Zhou, H., Li, T., Chen, W. The discussion of biomarker index. Journal of Daqing Petroleum Institute, 1987, 3, 9–15 (in Chinese with English abstract).
57. Huang, W., Meinschein, W. G. Sterols as ecological indicators. Geochim. Cosmochim. Ac., 1979, 43(5), 739–745.
https://doi.org/10.1016/0016-7037(79)90257-6
58. Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 1986, 9(2), 83–99.
https://doi.org/10.1016/0146-6380(86)90089-6
59. Fowler, M. G., Douglas, A. G. Saturated hydrocarbon biomarkers in oils of Late Precambrian age from Eastern Siberia. Org. Geochem., 1987, 11(3), 201–213.
https://doi.org/10.1016/0146-6380(87)90023-4
60. Seifert, W. K., Moldowan, J. M. Use of biological markers in petroleum exploration. In: Methods in Geochemistry and Geophysics, Vol. 24 (Johns, R. B., ed.). Elsevier, Amsterdam, 1986, 261–290.
61. Cardoso, J. N., Chicarelli, M. I. The organic geochemistry of the Paraiba Valley and Maraú oil-shales. In: Advances in Organic Geochemistry (Bjoroy, M. et al., eds.), 1981. Wiley & Sons, 1983, 828–833.
62. Albaigés, J., Algaba, J., Grimalt, J. Extractable and bound neutral lipids in some lacustrine sediments. Org. Geochem., 1984, 6, 223–236.
https://doi.org/10.1016/0146-6380(84)90044-5
63. Rieley, G., Collier, R. J., Jones, D. M., Eglinton, G., Eakin, P. A., Fallick, A. E. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature, 1991, 352(6334), 425–427.
https://doi.org/10.1038/352425a0
64. Ying, G., Fan, P. Origin of aldehydes in sediments of Qinghai Lake. Sci. China, Ser. B, 1993, 36(4), 507–512 (in Chinese).
65. Xu, S. Organic Chemistry. Higher Education Press, Beijing, 1982, 293–307 (in Chinese).
66. Tuo, J., Zhang, M., Wang, X. The content and significance of fatty acid methyl esters in Dongsheng sedimentary uranium ore deposits, Ordos basin, China. Acta Sedimentologica Sinica, 2006, 24(3), 432–439 (in Chinese with English abstract).
67. Kolattukudy, P. E. Biopolyester membranes of plants: cutin and suberin. Science, 1980, 208(4447), 990–1000.
https://doi.org/10.1126/science.208.4447.990
68. McMurry, J., Simanek, E. Fundamentals of Organic Chemistry. 6th edition. Cengage Learning, 2006, 246–292.
69. Deines, P. The isotopic composition of reduced organic carbon. In: Handbook of Environmental Isotope Geochemistry (Fritz, P., Fontes, J. C., eds.). Vol. 1. The Terrestrial Environment. Elsevier, Amsterdam, 1980, 329–406.
https://doi.org/10.1016/b978-0-444-41780-0.50015-8
70. O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience, 1988, 38(5), 328–336.
https://doi.org/10.2307/1310735
71. Farquhar, G. D., Ehleringer, J. R., Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1989, 40, 503–537.
https://doi.org/10.1146/annurev.pp.40.060189.002443
72. Liu, W., Li, X., An, Z., Xu, L., Zhang, Q. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chem. Geol., 2013, 347, 153–160.
https://doi.org/10.1016/j.chemgeo.2013.04.009
73. Duan, Y., Ma, L. Several problems concerned with stable carbon isotopic geochemistry of biomarker compounds. Advances in Earth Science, 1996, 11(4), 356–361 (in Chinese with English abstract).
74. Zhang, X. Regional stratigraphic chart of northwestern China, branch of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing, 1981 (in Chinese).
75. Hu, Y. Characteristics of the Permian floras in the western part of China. Regional Geology of China, 1985, 12(2), 99–108 (in Chinese with English abstract).
76. Liao, Z., Lu, L., Jiang, N., Xia, F., Sun, F., Zhou, Y., Li, S., Zhang, Z. Carboniferous and Permian in the western part of eastern Tianshan Mountains: In: Eleventh International Congress of Carboniferous Stratigraphy and Geology, August 31–September 4, 1987, Beijing, (Liao, Z., ed.), 1987, 4, 50.
77. Ziegler, A. M., Phytogeographic patterns and continental configurations during the Permian Period. In: Palaeozoic Palaeogeography and Biogeography (McKerrow, W. S., Scotese, C. R., eds.). Geological Society Memoir, 1990, 12(1), 363–379.https://doi.org/10.1144/gsl.mem.1990.012.01.35