ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
APPROACHES TO IMPROVING THE POROSITY AND PERMEABILITY OF MAOMING OIL SHALE, SOUTH CHINA; pp. 216–227
PDF | doi: 10.3176/oil.2016.3.02

Authors
YUANPING GAO, QIULIAN LONG, JIANZHENG SU, JIAYUAN HE, PENG GUO
Abstract

This work aims at developing suitable means to improve the porosity and permeability of oil shale formations. The pulse power fracturing technology (PPFT) is designed and applied to the Maoming oil shale block in South China and its effect is assessed by conducting ultrasonic wave and hydraulic pressure drop tests. The test results show that stimulation can be effectively applied to the oil shale formation. The treatment agent post-pro­cessing technology (TAPT) is designed and tested using oil shale samples from the Maoming block. The experimental results demonstrate that the porosity, pyrolysis rate and oil yield of oil shale samples can be increased by more than 25% after applying the treatment agent. The study concludes that PPFT and TAPT have great potential to be effectively used for the stimula­tion of oil shale formations.

References

1.         Bunger, J. W., Crawford, P. M., Johnson, H. R. Is oil shale America’s answer to peak-oil challenge? Oil Gas J., 2004, 102(8), 16–24.

2.         Dyni, J. R. Geology and Resources of Some World Oil-Shale Deposits. Scientific Investigations Report 2005-5294. US Geological Survey, Reston, Virginia, 2006.

3.         Liu, Z. J., Dong, Q. S., Ye, S. Q., Zhu, J. W., Guo, W., Li, D. C., Liu, R., Zhang, H. L., Du, J. F. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese with English abstract).

4.         Guo, Y. G., Xu, X. Q., Wang, H. Y., Zheng, D. W., Zhang, Y. G., Hou, Q. H. Research progress in use of oil shale as an unconventional energy. Jiangsu Chemical Industry, 2008, 36(2), 6–9 (in Chinese).

5.         Fang, C. H., Zheng, D. W., Liu, D. X., Wang, Y. F., Xue, H. Q. The develop­ment and trends about in-situ mining technology of oil shale. Energy Techno­logy and Management, 2009, (2), 78–80 (in Chinese).

6.         Feng, X. W., Chen, C., Chen, D. Y. New development of oil shale in-situ technology. China Mining Magazine, 2011, 20(6), 84–87 (in Chinese).

7.         Vinegar, H. Shell’s in-situ conversion process for oil shale. 26th Oil Shale Symposium, Colorado School of Mines, 16–20 October 2006, Colorado, USA.

8.         Yang, H., Gao, X. Q., Xiong, F. S., Zhang, J. L., Li, Y. J. Temperature distribu­tion simulation and optimization design of electric heater for in-situ oil shale heating. Oil Shale, 2014, 31(2), 105–120.
http://dx.doi.org/10.3176/oil.2014.2.02

9.         Tanaka, P. L., Yeakel, J. D., Symington, W. A., Spiecker, P. M., Del Pico, M., Thomas, M. M., Sullivan, K. B., Stone, M. T. Plan to test ExxonMobil’s in situ oil shale technology on a proposed RD&D lease. 31st Oil Shale Symposium, Colorado School of Mines, 17–19 October 2011, Colorado, USA.

10.      Looney, M. D., Polzer, R., Yoshioka, K., Minnery, G. Chevron’s plans for rubbliza­tion of Green River Formation oil shale (GROS) for chemical con­version. 31st Oil Shale Symposium, Colorado School of Mines, 17–19 October 2011, Colorado, USA.

11.      Allix, P., Burnham, A. K., Fowler, T., Herron, M., Kleinberg, R., Syming­ton, B. Coax­ing oil from shale. Oilfield Review (Schlumberger), Winter 2010/2011, 22(4), 4–15.

12.      Qian, J. L., Yin, L., Wang, J. Q., Li, S. Y., Han, F., He, Y. G. Oil Shale: Supple­mentary Energy of Petroleum. Sinopec Press, Beijing, 2008, 71 (in Chinese).

13.      Yutkin, L. A. Electrohydraulic Effect (Yu, J. S., transl.) Science Publishing House, Beijing, 1962 (in Chinese).

Bai, X. Y., Sun, G. Z. Application of impulse discharging on cleanout of wells. Oil-Gas Field Surface Engineering, 1996, 15(3), 8–10 (in Chinese).

Back to Issue