In order to study the relationship between the chemical structure and pyrolysis products of oil shale, a series of experiments with Huadian oil shale of China were performed at various heating rates (10, 20 and 50 °C/min) by using Thermogravimetric Analysis-Fourier Transform Infrared Spectroscopy (TG-FTIR). The quantitative analysis of pyrolysis products, including CH4, CO, CO2, H2O and shale oil, was carried out. The results showed the temperature at which the evolution rate of pyrolysis products reached a peak value. Also, the evolution rate was found to increase with increasing heating rate. For the abovementioned pyrolysis products, the values of kinetic parameters such as activation energy (E) and pre-exponent factor (A) were between 183 and 270 kJ · mol–1 and from 3.3 × 109 to 2.8 × 1013 s–1, respectively. The Functional Group-Depolymerization Vaporization Crosslinking (FG-DVC) pyrolysis model based on the chemical structure of fuel was employed to simulate the evolution process of CH4, CO, CO2, H2O and shale oil at three different heating rates: 10, 20 and 50 °C/min. The simulation results were in good agreement with TG-FTIR experimental data, indicating the applicability of the FG-DVC model to modelling the pyrolysis process of oil shale.
1. Wang, S., Jiang, X., Han, X., Tong, J. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.
http://dx.doi.org/10.1016/j.energy.2012.03.066
2. Qian Jialin, Yin Liang. Oil Shale: Petroleum Alternative. China Petrochemical Press, 2010.
3. Qian, J., Wang, J., Li, S. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.
4. Gürüz, G. A, Üçtepe, Ü., Durusoy, T. Mathematical modeling of thermal decomposition of coal. J. Anal. Appl. Pyrol., 2004, 71(2), 537–551.
http://dx.doi.org/10.1016/j.jaap.2003.08.007
5. Anthony, D. B., Howard, J. B. Coal devolatilization and hydrogasification. AIChE J., 1976, 22(4), 625–656.
http://dx.doi.org/10.1002/aic.690220403
6. Howard, J. B. Fundamentals of coal pyrolysis and hydropyrolysis. In: Chemistry of Coal Utilization, Second Supplementary Volume (Elliott, M. A., ed.). John Wiley & Sons, 1981, 665–784.
7. Campbell, J. H., Gallegos, G, Gregg, M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10), 727–732.
http://dx.doi.org/10.1016/0016-2361(80)90027-7
8. Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A., Deshpande, G. V. General model of coal devolatilization. Energ. Fuel., 1988, 2(4), 405–422.
http://dx.doi.org/10.1021/ef00010a006
9. Solomon, P. R., Hamblen, D. G., Yu, Z. Z., Serio, M. A. Network models of coal thermal decomposition. Fuel, 1990, 69(6), 754–763.
http://dx.doi.org/10.1016/0016-2361(90)90042-O
10. Solomon, P. R., Hamblen, D. G., Serio, M. A., Yu, Z. Z., Charpenay, S. A characterization method and model for predicting coal conversion behaviour. Fuel, 1993, 72(4), 469–488.
http://dx.doi.org/10.1016/0016-2361(93)90106-C
11. Niksa, S., Kerstein, A. R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energ. Fuel., 1991, 5(5), 647–665.
http://dx.doi.org/10.1021/ef00029a006
12. Grant, D. M., Pugmire, R. J., Fletcher, T. H., Kerstein, A. R. Chemical model of coal devolatilization using percolation lattice statistics. Energ. Fuel., 1989, 3(2), 175–186.
http://dx.doi.org/10.1021/ef00014a011
13. Lü, X., Sun, Y., Lu, T., Bai, F., Viljanen, M. An efficient and general analytical approach to modelling pyrolysis kinetics of oil shale. Fuel, 2014, 135, 182–187.
http://dx.doi.org/10.1016/j.fuel.2014.06.009
14. Li, S., Yue, C. Study of different kinetic models for oil shale pyrolysis. Fuel Process. Technol., 2004, 85(1), 51–61.
http://dx.doi.org/10.1016/S0378-3820(03)00097-3
15. Janković, B. The kinetic modeling of the non-isothermal pyrolysis of Brazilian oil shale: Application of the Weibull probability mixture model. J. Petrol. Sci. Eng., 2013, 111, 25–36.
http://dx.doi.org/10.1016/j.petrol.2013.10.001
16. Sun, Y., Bai, F., Lü, X., Jia, C., Wang, Q., Guo, M., Li, Q., Guo, W. Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model. Energy, 2015, 82, 705–713.
http://dx.doi.org/10.1016/j.energy.2015.01.080
17. Jones, J. M., Pourkashanian, M., Williams, A., Hainsworth, D. A comprehensive biomass combustion model. Renew. Ener., 2000, 19(1–2), 229–234.
http://dx.doi.org/10.1016/S0960-1481(99)00036-1
18. De Jong, W., Di Nola, G., Venneker, B. C. H., Spliethoff, H., Wójtowicz, M. A. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel, 2007, 86(15), 2367–2376.
http://dx.doi.org/10.1016/j.fuel.2007.01.032
19. Wang, H., Jiang, X., Yuan, D., Wan, P. Pyrolysis of coal water slurry volatile matter by using FG-DVC model. CIESC Journal, 2006, 57(10), 2428–2432 (in Chinese, summary in English).
20. Wang, Q., Wang, R., Jia, C. X., Ren, L. G., Wang, H. T., Yan, Y. H. FG-DVC model for oil shale pyrolysis. CIESC Journal, 2014, 65(6), 2308–2315 (in Chinese, summary in English).
21. Xu, T., Huang, X. Study on combustion mechanism of asphalt binder by using TG–FTIR technique. Fuel, 2010, 89(9), 2185–2190.
http://dx.doi.org/10.1016/j.fuel.2010.01.012
22. Smith, A. L. Applied Infrared Spectroscopy: Fundamentals, Techniques, and Analytical Problem-Solving. Wiley, New York, 1979.
23. Chen, L. G., Tun, H. C., Cen, G. F. Quantitative research of evolved gas rate by TGA-FTIR. Journal of Zhejiang University (Engineering Science), 2009, 43(7), 1332–1336 (in Chinese, summary in English).
24. Chen, L. G., Wu, X. C., Zhou, H., Cen, K. F. Quantitative analysis of multi-component gases mixture evolved in combined TG-FTIR. Journal of Zhejiang University (Engineering Science), 2010, 44(8), 1579–1583 (in Chinese, summary in English).
25. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales. Appl. Energ., 1999, 63(4), 269–286.
http://dx.doi.org/10.1016/S0306-2619(99)00033-1
26. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.
http://dx.doi.org/10.1016/j.fuproc.2011.04.037
27. Ballice, L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol., 2005, 86(6), 673–690.
http://dx.doi.org/10.1016/j.fuproc.2004.07.003
28. Yan, J., Jiang, X., Han, X., Liu, J. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104, 307–317.
http://dx.doi.org/10.1016/j.fuel.2012.10.024
29. Scaccia, S. TG–FTIR and kinetics of devolatilization of Sulcis coal. J. Anal. Appl. Pyrol., 2013, 104, 95–102.
http://dx.doi.org/10.1016/j.jaap.2013.09.002
30. Solomon, P. R., Serio, M. A., Suuberg, E. M. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Prog. Energ. Combust., 1992, 18(2), 133–220.
http://dx.doi.org/10.1016/0360-1285(92)90021-R
31. Campbell, J. H., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10), 727–732.
http://dx.doi.org/10.1016/0016-2361(80)90027-7
32. Huss, E. B., Burnham, A. K. Gas evolution during pyrolysis of various Colorado oil shales. Fuel, 1982, 61(12), 1188–1196.
http://dx.doi.org/10.1016/0016-2361(82)90018-7
33. Suuberg, E. M., Sherman, J, Lilly, W. D. Product evolution during rapid pyrolysis of Green River Formation oil shale. Fuel, 1987, 66(9), 1176–1184.
http://dx.doi.org/10.1016/0016-2361(87)90054-8
http://dx.doi.org/10.1016/s0082-0784(79)80016-8