ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
A TGA-MS INVESTIGATION OF THE EFFECT OF HEATING RATE AND MINERAL MATRIX ON THE PYROLYSIS OF KEROGEN IN OIL SHALE; pp. 125–141
PDF | doi: 10.3176/oil.2016.2.03

Authors
YIRU HUANG, CHAO FAN, Xiangxin Han, Xiumin Jiang
Abstract

A demineralized Dachengzi oil shale sample, p-kerogen, is obtained through hydrochloric & hydrofluoric (HCl&HF) treatment. Themogravimetric analysis combined with on-line mass spectrometry (TGA-MS) tests on original oil shale and p-kerogen were carried out at two heating rates, 5 °C/min and 15 °C/min, to study the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale. In the pyrolysis products, the amounts of both the organic and inorganic gases generated are significant with the evolution of oil in the temperature range of 370–570 °C. Increasing the heating rate from 5 °C/min to 15 °C/min leads to the decrease of most of the small molecule products of interest in this research, which indicates that in the oil shale pyrolysis the secondary cracking reactions may be inhibited by such increase. With increasing heating rate the thermogravimetric (TG) curves shift to a higher temperature region with an increase of about 10 °C due to the temperature difference between the surface and the center of the sample particles. The amount of alkenes generated is higher than that of alkanes and the alkene/alkane ratio increases with heating rate. At the same heating rate, the amounts of both the inorganic and organic compounds generated in the oil shale pyrolysis are higher than those produced in the p-kerogen pyrolysis, suggesting that mineral matrix has an obvious catalytic effect on the pyrolysis of kerogen. Hydrogen release is markedly strengthened in the oil evolution process because of the resultant effect of mineral matter which promotes the cracking reactions in the pyrolysis of kerogen. Compared with oil shale, the TG curves of p-kerogen shift to a lower temperature zone with a decrease of about 10 °C because the pore channels formed in the demineralization treatment intensify the heat and mass transfer in the sample particles.

References

  1. Dyni, J. R. Geology and resources of some world oil shale deposits. Oil Shale, 2003, 20(3), 193–252.

  2. Lisboa, A. C. L. Investigations on oil shale particle reactions. PhD thesis, University of British Columbia, Vancouver, 1997.

  3. Yu, H., Li, S. Y., Jin, G. Z. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel. Energ. Fuel., 2010, 24(8), 4419–4424.
http://dx.doi.org/10.1021/ef100531u

  4. Liu, Z. J., Dong, Q. S., Ye, S. Q., Zhu, J. W., Guo, W., Li, D. C., Liu, R., Zhang, H. L., Du, J. F. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese).

  5. Zheng, G., Koziński, J. A. Thermal events occurring during the combustion of biomass residue. Fuel, 2000, 79(2), 181–192.
http://dx.doi.org/10.1016/S0016-2361(99)00130-1

  6. Materazzi, S. Mass spectrometry coupled to thermogravimetry (TG-MS) for evolved gas characterization: A review. Appl. Spectrosc. Rev., 1998, 33(3), 189–218.
http://dx.doi.org/10.1080/05704929808006777

  7. Oja, V. Characterization of tars from Estonian Kukersite oil shale based on their volatility. J. Anal. Appl. Pyrol., 2005, 74(1–2), 55–60.
http://dx.doi.org/10.1016/j.jaap.2004.11.032

  8. Szabo, E., Olah, M., Ronkay, F., Miskolczi, N., Blazso, M. Characterization of the liquid product recovered through pyrolysis of PMMA-ABS waste. J. Anal. Appl. Pyrol., 2011, 92(1), 19–24.
http://dx.doi.org/10.1016/j.jaap.2011.04.008

  9. Ojala, M., Mattila, I., Särme, T., Ketola, R. A., Kotiaho, T. A new purge-and-membrane mass spectrometric (PAM-MS) instrument for analysis of volatile organic compounds in soil samples. Analyst, 1999, 124(10), 1421–1424.
http://dx.doi.org/10.1039/a905106f

10. Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10), 718–726.
http://dx.doi.org/10.1016/0016-2361(80)90027-7

11. Lv, G. J., Wu, S. B. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and PY-GC/MS. J. Anal. Appl. Pyrol., 2012, 97, 11–18.
http://dx.doi.org/10.1016/j.jaap.2012.04.010

12. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333–341.
http://dx.doi.org/10.1016/j.fuel.2011.09.018

13. Marshall, C. P., Kamali Kannangara, G. S., Wilson, M. A., Guerbois, J.-P., Hartung-Kagi, B., Hart, G. Potential of thermogravimetric analysis coupled with mass spectrometry for the evaluation of kerogen in source rocks. Chem. Geol., 2002, 184(3–4), 185–194.
http://dx.doi.org/10.1016/S0009-2541(01)00362-X

14. Shen, M. S., Lui, A. P., Shadle, L. J., Zhang, G. Q., Morris, G. J. Kinetic studies of rapid oil shale pyrolysis: 2. Rapid pyrolysis of oil shales in a laminar-flow entrained reactor. Fuel, 1991, 70(11), 1277–1284.
http://dx.doi.org/10.1016/0016-2361(91)90214-U

15. Al-Harahsheh, A., Al-Ayed, O., Al-Harahsheh, M., Abu-El-Halawah, R. Heat­ing rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrol., 2010, 89(2), 239–243.
http://dx.doi.org/10.1016/j.jaap.2010.08.009

16. Al-Ayed, O. S., Al-Harahsheh, A., Khaleel, A. M., Al-Harahsheh, M. Oil shale pyrolysis in fixed-bed retort with different heating rates. Oil Shale, 2009, 26(2), 139–147.
http://dx.doi.org/10.3176/oil.2009.2.06

17. Al-Ayed, O. S., Suliman, M. R., Rahman, N. A. Kinetic modeling of liquid generation from oil shale in fixed bed retort. Appl. Energ., 2010, 87(7), 2273–2277.
http://dx.doi.org/10.1016/j.apenergy.2010.02.006

18. Olivella, M. A., De Las Heras, F X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals. Oil Shale, 2008, 25(2), 227–245.
http://dx.doi.org/10.3176/oil.2008.2.05

19. Wang, Q., Sun, B. Z., Hu, A. J., Bai, J. R., Li, S. H. Pyrolysis characteristics of Huadian oil shales. Oil Shale, 2007, 24(2), 147–157.

20. Kyotani, T., Kubota, K., Cao, J., Yamashita, H., Tomita, A. Combustion and CO2 gasification of coals in a wide temperature range. Fuel Process. Technol., 1993, 36(1–3), 209–217.
http://dx.doi.org/10.1016/0378-3820(93)90029-4

21. Evans, R. J., Felbeck Jr, G. T. High temperature simulation of petroleum forma­tion – II. Effect of inorganic sedimentary constituents on hydrocarbon forma­tion. Org. Geochem., 1983, 4(3–4), 145–152.
http://dx.doi.org/10.1016/0146-6380(83)90035-9

22. Siskin, M., Brons, G., Payack Jr, J. F. Disruption of kerogen-mineral inter­actions in Rundle Ramsay Crossing oil shale. Energ. Fuel., 1989, 3(1), 108–109.
http://dx.doi.org/10.1021/ef00013a019

23. Yan, J. W., Jiang, X. M., Han, X. X., Liu, J. G. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104, 307–317.
http://dx.doi.org/10.1016/j.fuel.2012.10.024

24. Larsen, J. W., Pan, C. S., Shawver, S. Effect of demineralization on the macro­molecular structure of coals. Energ. Fuel., 1989, 3(5), 557–561.
http://dx.doi.org/10.1021/ef00017a004

25. Saxby, J. D. Isolation of kerogen in sediments by chemical methods. Chem. Geol., 1970, 6, 173–184.
http://dx.doi.org/10.1016/0009-2541(70)90017-3

26. Lu, S. T., Ruth, E., Kaplan, I. R. Pyrolysis of kerogens in the absence and presence of montmorillonite – I. The generation, degradation and isomerization of steranes and triterpanes at 200 and 300°C. Org. Geochem., 1989, 14(5), 491–499.
http://dx.doi.org/10.1016/0146-6380(89)90029-6

27. Joseph, J. T., Forrai, T. R. Effect of exchangeable cations on liquefaction of low rank coals. Fuel, 1992, 71(1), 75–80.
http://dx.doi.org/10.1016/0016-2361(92)90195-T

28. Yürüm, Y., Dror, Y., Levy, M. Effect of acid dissolution on the mineral matrix and organic matter of Zefa EFE oil shale. Fuel Process. Technol., 1985, 11(1), 71–86.
http://dx.doi.org/10.1016/0378-3820(85)90017-7

29. Reyes, J. A., Conesa, J. A., Marcilla, A. Pyrolysis and combustion of poly­coated cartons: kinetic model and MS-analysis. J. Anal. Appl. Pyrol., 2001, 58–59, 747–763.
http://dx.doi.org/10.1016/S0165-2370(00)00123-6

30. Raemaekers, K. G. H., Bart, J. C. J. Applications of simultaneous thermo­gravimetry-mass spectrometry in polymer analysis. Thermochim. Acta, 1997, 295(1–2), 1–58.
http://dx.doi.org/10.1016/S0040-6031(97)00097-X

31. Nazzal, J. M. Gas evolution from the pyrolysis of Jordan oil shale in a fixed-bed reactor. J. Therm. Anal. Calorim., 2001, 65(3), 847–857.
http://dx.doi.org/10.1023/A:1011936401407

32. Yan, J. W., Jiang, X. M., Han, X. X. Study on the characteristics of the oil shale and shale char mixture pyrolysis. Energ. Fuel., 2009, 23(12), 5792–5797.
http://dx.doi.org/10.1021/ef9008345

33. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel, 1998, 77(12), 1303–1309.
http://dx.doi.org/10.1016/S0016-2361(98)00045-3

34. Espitalie, J., Madec, M., Tissot, B. Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. AAPG Bull., 1980, 64(1), 59–66.

35. Wang, S., Liu, J. X., Jiang, X. M., Han, X. X., Tong, J. H. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27–47.
http://dx.doi.org/10.3176/oil.2013.1.04

Back to Issue