ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
MULTIPLE CONTROLLING FACTORS OF THE ENRICHMENT OF ORGANIC MATTER IN THE UPPER CRETACEOUS OIL SHALE SEQUENCES OF THE SONGLIAO BASIN, NE CHINA: IMPLICATIONS FROM GEOCHEMICAL ANALYSES; pp. 142–166
PDF | doi: 10.3176/oil.2016.2.04

Authors
YU SONG, ZHAOJUN LIU, QINGTAO MENG, JINJUN XU, PINGCHANG SUN, LIJUAN CHENG, GUODONG ZHENG
Abstract

Two oil shale sequences in the Upper Cretaceous Qingshankou and Nenjiang Formations of the Songliao Basin, NE China, representing organic matter (OM)-rich hydrocarbon source rocks, are investigated. According to bulk and inorganic geochemical data, there are significant differences in OM enrichment conditions between the first member of the Qingshankou Forma­tion (K2qn1) and the second member of the Nenjiang Formation (K2n2). The oil shale in K2qn1 was deposited in a warm-humid paleo­climate, with strong water salinity stratification and dysoxic conditions, combined with high bioproductivity and low detrital matter input. In contrast, the oil shale in K2n2 was accumulated in a warm semi-humid paleo­climate, with weak water salinity stratification and partially oxic con­ditions, when the bioproductivity and detrital matter input were medium. In addition, the origin of OM influenced its enrichment. In summary, high bioproductivity and strong water salinity stratification were the major controlling factors for OM enrichment in K2qn1, while the origin of OM and dysoxic conditions were the major governing factors for OM enrichment in K2n2. Thus, the OM enrich­ment models of these two members are established.

References

  1. Mayer, L. M. Surface area control of organic carbon accumulation in con­tinental shelf sediments. Geochim. Cosmochim. Ac., 1994, 58(4), 1271–1284.
http://dx.doi.org/10.1016/0016-7037(94)90381-6

  2. Kennedy, M. J., Pevear, D. R., Hill, R. J. Mineral surface control of organic carbon in black shale. Science, 2002, 295(5555), 657–660.
http://dx.doi.org/10.1126/science.1066611

  3. Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middleburg. J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., Wakeham, S. G. Selective pre­serva­tion of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences, 2010, 7(2), 483–511.
http://dx.doi.org/10.5194/bg-7-483-2010

  4. Talbot, M. R. The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa. In: Lacustrine Petroleum Source Rocks (Fleet, A. J., Kelts, K., Talbot, M. R., eds.). Geological Society, London, 1988, 40, 29–43.
http://dx.doi.org/10.1144/gsl.sp.1988.040.01.04

  5. Bohacs, K. M. Source quality variations tied to sequence development in the Monterey and associated formations, southwestern California. In: Source Rocks in a Sequence Stratigraphic Framework (Katz, B. J., Pratt, L. M., eds.). AAPG Studies in Geology, 1993, 37, 177–204.

  6. Bohacs, K. M., Carroll, A. R., Neal, J. E., Mankiewicz, P. J. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-strati­graphic-geochemical framework. In: Lake Basins through Space and Time (Gier­lowski-Kordesch, E. H., Kelts, K. R., eds.). AAPG Studies in Geology, 2000, 46, 3–34.

  7. Pedersen, T. F., Calvert, S. E. Anoxia vs. productivity: what controls the forma­tion of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull., 1990, 74(4), 454–466.

  8. Caplan, M. L., Bustin, R. M. Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production. Org. Geochem., 1998, 30(2–3), 161–188.

  9. Katz, B. J. Controlling factors on source rock development – a review of productivity, preservation, and sedimentation rate. In: The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences (Harris, N. B., ed.). SEPM Special Publication, 2005, 82, 7–16.

10. Demaison, G. J., Moore, G. T. Anoxic environments and oil source bed genesis. AAPG Bull., 1980, 64(8), 1179–1209.
http://dx.doi.org/10.1016/0146-6380(80)90017-0

11. Tyson, R. V. The “productivity versus preservation” controversy: cause, flaws, and resolution. In: The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences (Harris, N. B., ed.). SEPM Special Publication, 2005, 82, 17–33.

12. Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W., Brett, C. E. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 2000, 15(3), 280–291.
http://dx.doi.org/10.1029/1999PA000445

13. Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollan­der, D. J., Lyons, T. W. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol., 2003, 195, 229–273.
http://dx.doi.org/10.1016/S0009-2541(02)00397-2

14. Jia, J. L., Bechtel, A., Liu, Z. J., Strobl, S. A. I., Sun, P. C., Sachsenhofer, R. F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geo­chemical analyses. Int. J. Coal Geol., 2013, 113, 11–26.
http://dx.doi.org/10.1016/j.coal.2013.03.004

15. Jia, J. L., Liu, Z. J., Bechtel, A., Strobl, S. A. I., Sun, P. C. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). Int. J. Earth Sci., 2013, 102, 1717–1734.
http://dx.doi.org/10.1007/s00531-013-0903-7

16. Bechtel, A., Jia, J. L., Strobl, S. A. I., Sachsenhofer, R. F., Liu, Z. J., Grat­zer, R., Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): implications from geochemical analysis. Org. Geochem., 2012, 46, 76–95.
http://dx.doi.org/10.1016/j.orggeochem.2012.02.003

17. Jia, J. L., Liu, Z. J., Meng, Q. T., Liu, R., Sun, P. C., Chen, Y. C. Quantitative evaluation of oil shale based on well log and 3-D seismic technique in the Songliao Basin, Northeast China. Oil Shale, 2012, 29(2), 128–150.
http://dx.doi.org/10.3176/oil.2012.2.04

18. Feng, Z. Q., Jia, C. Z., Xie, X. N., Zhang, S., Feng, Z. H., Timothy, A. C. Tectono­stratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res., 2010, 22(1), 79–95.
http://dx.doi.org/10.1111/j.1365-2117.2009.00445.x

19. Liu, Z. J., Sun, P. C., Jia, J. L., Meng, Q. T. Distinguishing features and their genetic interpretation of stratigraphic sequences in continental deep water setting: A case from Qingshankou Formation in Songliao Basin. Earth Science Frontiers, 2011, 18(4), 171–180 (in Chinese, summary in English).

20. Nali, M., Caccialanza, G., Ghiselli, C., Chiaramonte, M. A. Tmax of asphaltenes: a parameter for oil maturity assessment. Org. Geochem., 2000, 31(12), 1325–1332.
http://dx.doi.org/10.1016/S0146-6380(00)00068-1

21. Hayashi, K. I., Fujisawa, H., Holland, H. D., Ohmoto, H. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmo­chim. Ac., 1997, 61(19), 4115–4137.
http://dx.doi.org/10.1016/S0016-7037(97)00214-7

22. Ross, D. J. K., Bustin, R. M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chemi. Geol., 2009, 260, 1–19.
http://dx.doi.org/10.1016/j.chemgeo.2008.10.027

23. Meng, Q. T., Liu, Z. J., Bruch, A. A., Liu, R., Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. J. Asian Earth Sci., 2012, 45, 95–105.
http://dx.doi.org/10.1016/j.jseaes.2011.09.021

24. Huang, Q. H., Zheng, Y. L., Yang, M. J., Li, X. J., Han, M. X., Chen, C. R. On Cretaceous paleoclimate in the Songliao basin. Acta Micropalaeontologica Sinica, 1999, 16(1), 95–103 (in Chinese, summary in English).

25. Wang, C. S., Feng, Z. Q., Zhang, L. M., Huang, Y. J., Cao, K., Wang, P. J., Zhao, B. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeogr. Palaeocl., 2013, 385, 17–30.
http://dx.doi.org/10.1016/j.palaeo.2012.01.030

26. Berner, R. A., Raiswell, R. Burial of organic carbon and pyrite sulfur in sedi­ments over Phanerozoic time: A new theory. Geochim. Cosmochim. Ac., 1983, 47(5), 855–862.
http://dx.doi.org/10.1016/0016-7037(83)90151-5

27. Raiswell,  R., Buckley, F., Berber, R. A., Anderson, T. F. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sediment. Petrol., 1988, 58(5), 812–819.

28. Dean, W. E., Arthur, M. A. Iron–sulfur–carbon relationships in organic-carbon-rich sequences. I: Cretaceous Western Interior Seaway. Am. J. Sci., 1989, 289, 708–743.
http://dx.doi.org/10.2475/ajs.289.6.708

29. Arthur, M. A., Sageman, B. B. Marine black shales: depositional mechanisms and environments of ancient deposits. Ann. Rev. Earth Pl. Sc., 1994, 22, 499–551.
http://dx.doi.org/10.1146/annurev.ea.22.050194.002435

30. Talbot, M. R., Livingstone, D. A. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr. Palaeocl., 1989, 70(1–3), 121–137.
http://dx.doi.org/10.1016/0031-0182(89)90084-9

31. Wedepohl, K. H. Environmental influences on the chemical composition of shales and clays. In: Physics and Chemistry of the Earth, vol. 8 (Ahrens, L. H., Press, F., Runcorn, S. K., Urey, H. C., eds.). Pergamon, Oxford, 1971, 305–333.
http://dx.doi.org/10.1016/0079-1946(71)90020-6

32. Lyons, T. W., Werne, J. P., Hollander, D. J., Murray, R. W. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem. Geol., 2003, 195(1–4), 131–157.
http://dx.doi.org/10.1016/S0009-2541(02)00392-3

33. Algeo, T. J., Maynard, J. B. Trace element behavior and redox facies of core shales of Upper Pennsylvanian Kansas-type cyclotherms. Chem. Geol., 2004, 206, 289–318.
http://dx.doi.org/10.1016/j.chemgeo.2003.12.009

34. Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 1994, 111(1–4), 111–129.
http://dx.doi.org/10.1016/0009-2541(94)90085-X

35. Wilde, P., Quinby-Hunt, M. S., Erdtmann, B. D. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sediment. Geol., 1996, 101(1–2), 43–53.
http://dx.doi.org/10.1016/0037-0738(95)00020-8

36. Calvert, S. E., Bustin, R. M., Ingall, E. D. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales. Geochim. Cosmochim. Ac., 1996, 60(9), 1577–1593.
http://dx.doi.org/10.1016/0016-7037(96)00041-5

37. Wang, A. H. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms. Acta Sedimentologica Sinica, 1996, 14(4), 168–173 (in Chinese, summary in English).

38. Zhang, M. M., Liu, Z. J., Xu, S. C., Sun, P. C., Hu, X. F. Element response to the ancient lake information and its evolution history of argillaceous source rocks in the Lucaogou Formation in Sangonghe area of southern margin of Junggar Basin. J. Earth Sci., 2013, 24(6), 987–996.
http://dx.doi.org/10.1007/s12583-013-0392-4

39. Chase, Z., Anderson, R. F., Fleisher, M. Q. Evidence from authigenic uranium for increased productivity of the glacial subantarctic ocean. Paleoceanography, 2001, 16(5), 468–478.
http://dx.doi.org/10.1029/2000PA000542

40. Langford, F. F., Blanc-Valleron, M.-M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull., 1990, 74(6), 799–804.

41. Hunt, J. M. Petroleum Geochemistry and Geology, 2nd ed. W. H. Freeman and Company, San Francisco, 1995, 491–524.

42. Huang, Y. J., Yang, G. S., Gu, J., Wang, P. K., Huang, Q. H., Feng, Z. H., Feng, L. J. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records. Palaeogeogr. Palaeocl., 2013, 385, 152–161.
http://dx.doi.org/10.1016/j.palaeo.2013.03.017

43. Gu, Z. W., Huang, B. Y., Chen, C. Z. Fossil Lamellibranchiata of China. Science Press, Beijing, 1976, 80–110 (in Chinese).

44. Zhang, M. M., Zhou, J. J. On the fossil fishes in Mesozoic and Cenozoic oil-bearing strata from East China and their sedimentary environment. Vertebrata Palasiatica, 1978, 16, 229–237 (in Chinese, summary in English).

45. Xi, D. P., Wan, X. Q., Feng, Z. Q., Li, S., Feng, Z. H., Jia, J. Z., Jing, X., Si, W. M. Discovery of Late Cretaceous foraminifera in the Songliao Basin: evidence from SK-1 and implications for identifying seawater incursions. Chinese Science Bulletin, 2011, 56(3), 253–256 (in Chinese, summary in English).
http://dx.doi.org/10.1007/s11434-010-4269-y

Back to Issue