The Mid-Cretaceous oil shale from the Qiangtang Basin represents the potentially largest marine oil shale resource in China. 23 samples, including oil shale and marl, were collected from the Basin’s Shengli River area to determine Sr and Nd isotope compositions, discuss sedimentary sources and paleoenvironmental changes. The Nd isotopic compositions of the Shengli River oil shale are similar to those of the Nadi Kangri Formation volcanic rocks and the underlying Suowa Formation limestone, indicating the Nadi Kangri Formation volcanic rocks and the Suowa Formation limestone origins of oil shale. The TDm ages of oil shale may be considered as the mean age of the upper continental crust in the Qiangtang Basin. Therefore, just like other fine-grained continental sediments, oil shale comprises sampled source rocks that were particularly well mixed through multiple stages of sedimentary recycling. The oil shale samples from the Shengli River area have higher 87Sr/86Sr ratios than the contemporary seawater. The high 87Sr/86Sr ratio reflects the Sr isotope composition of their original precipitation fluids. Marl samples from this area exhibit slightly higher 87Sr/86Sr ratios (mean = 0.7084) than oil shale samples (mean = 0.7076), and show a dramatic Sr isotopic shift near the boundary between the oil shale seams and marl beds. This shift is closely correlated with a rapid change in Nd isotopic compositions, indicating paleoenvironmental changes across the oil shale-marl boundary.
1. Wan, X. Q., Wei, M. R., Li, G. B. δ13C values from the Cenomanian-Turonian passage beds of southern Tibet. J. Asian Earth Sci., 2003, 21(8), 861–866.
http://dx.doi.org/10.1016/S1367-9120(02)00090-1
2. Hu, X. M., Wagreich, M., Yilmaz, I. O. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Res., 2012, 38, 1–6.
http://dx.doi.org/10.1016/j.cretres.2012.04.012
3. Fu, X. G., Wang, J., Qu, W. J., Duan, T. Z., Du, A. D., Wang, Z. J., Liu, H. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang Basin, northern Tibet, China. Oil Shale, 2008, 25(1), 47–55.
http://dx.doi.org/10.3176/oil.2008.1.06
4. Fu, X. G., Wang, J., Tan, F. W., Zeng, Y. H. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China): relationships with oil shale formation. Oil Shale, 2009, 26(3), 373–381.
http://dx.doi.org/10.3176/oil.2009.3.03
5. Sonibare, O. O., Jacob, D. E., Ward, C. R., Foley, S. F. Mineral and trace element composition of the Lokpanta oil shales in the Lower Benue Trough, Nigeria. Fuel, 2011, 90(9), 2843–2849.
http://dx.doi.org/10.1016/j.fuel.2011.04.037
6. Stein, M., Westermann, S., Adatte, T., Matera, V., Fleitmann, D., Spangenberg, J. E., Föllmi, K. B. Late Barremian-Early Aptian palaeoenvironmental change: The Cassis-La Bédoule section, southeast France. Cretaceous Res., 2012, 37, 209–222.
http://dx.doi.org/10.1016/j.cretres.2012.03.021
7. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, Northern Tibet, China. Int. J. Coal Geol., 2011, 85(1), 112–122.
http://dx.doi.org/10.1016/j.coal.2010.10.004
8. Krom, M. D., Michard, A., Cliff, R. A., Strohle, K. Sources of sediment to the Ionian Sea and western Levantine basin of the Eastern Mediterranean during S-1 sapropel times. Mar. Geol., 1999, 160(1–2), 45–61.
http://dx.doi.org/10.1016/S0025-3227(99)00015-8
9. Weldeab, S., Siebel, W., Wehausen, R., Emeis, K.-C., Schmiedl, G., Hemleben, C. Late Pleistocene sedimentation in the Western Mediterranean Sea: implications for productivity changes and climatic conditions in the catchment areas. Palaeogeogr. Palaeocl., 2003, 190, 121–137.
http://dx.doi.org/10.1016/S0031-0182(02)00602-8
10. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. Source regions and the sedimentary paleoenvironment of marine oil shale from the Bilong Co area, northern Tibet, China: an Sr-Nd isotopic study. Oil Shale, 2012, 29(4), 306–321.
http://dx.doi.org/10.3176/oil.2012.4.02
11. Baioumy, H. Rare earth elements and sulfur and strontium isotopes of Upper Cretaceous phosphorites in Egypt. Cretaceous Res., 2011, 32(3), 368–377.
http://dx.doi.org/10.1016/j.cretres.2011.01.008
12. Wang, J., Ding, J., Wang, C. S., Tan, F. W., Chen, M., Hu, P., Li, Y. L., Gao, R., Fang, H., Zhu, L. D., Li, Q. S., Zhang, M. H., Du, B. W., Fu, X. G., Li, Z. X., Wan, F. Survey and Evaluation on Tibet Oil and Gas Resources. Beijing: Geological Publishing House, Beijing, 2009, 11–223 (in Chinese).
13. Fu, X. G., Wang, J., Tan, F. W., Chen, M., Chen, W. B. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Res., 2010, 17(1), 135–144.
http://dx.doi.org/10.1016/j.gr.2009.04.010
14. Fu, X. G., Wang, J., Zeng, Y. H., Cheng, J., Tan, F. W. Origin and mode of occurrence of trace elements in marine oil shale from the Shengli River area, northern Tibet, China. Oil Shale, 2011, 28(4), 487–506.
http://dx.doi.org/10.3176/oil.2011.4.03
15. Ma, J. L., Wei, G. J., Xu, Y. G., Long, W. G. Variations of Sr-Nd-Hf isotopic systematics in basalt during intensive weathering. Chem. Geol., 2010, 269(3–4), 376–385.
http://dx.doi.org/10.1016/j.chemgeo.2009.10.012
16. Liang, X. R., Wei, G. J., Li, X. H., Liu, Y. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometry (MC-ICPMS). Geochimica, 2003, 32, 91–96 (in Chinese with English abstract).
17. Farmer, G. L., Ball, T. T. Sources of Middle Proterozoic to Early Cambrian siliciclastic sedimentary rocks in the Great Basin: A Nd isotope study. Bull. Geol. Soc. Am., 1997, 109(9), 1193–1205.
http://dx.doi.org/10.1130/0016-7606(1997)109<1193:SOMPTE>2.3.CO;2
18. Frimmel, H. E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol., 2009, 258(3–4), 338–353.
http://dx.doi.org/10.1016/j.chemgeo.2008.10.033
19. Baioumy, H. Rare earth elements and sulfur and strontium isotopes of upper Cretaceous phosphorites in Egypt. Cretaceous Res., 2011, 32(3), 368–377.
http://dx.doi.org/10.1016/j.cretres.2011.01.008
20. Zhao, Y. Y., Zheng, Y. F., Chen, F. K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem. Geol., 2009, 265(3–4), 345–362.
http://dx.doi.org/10.1016/j.chemgeo.2009.04.015
21. Lan, C. Y., Lee, C. S., Shen, J. J., Lu, C. Y., Mertzman, S. A., Wu, T. W. Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications. Western Pacific Earth Sci., 2002, 2(2), 205–222.
22. Ugidos, J. M., Valladares, M. I., Recio, C., Rogers, G., Fallick, A. E., Stephens, W. E. Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chem. Geol., 1997, 136(1–2), 55–70.
http://dx.doi.org/10.1016/S0009-2541(96)00138-6
http://dx.doi.org/10.1130/G24999A.1