The objective of this study was to obtain vapor pressure and heat of vaporization values of the less volatile heavy end of the Kukersite oil shale primary pyrolysis oil and therefore to have a quantitative insight into the vaporization ability of the oil during the pyrolysis process. The shale oil was produced via rapid pyrolysis in a laboratory scale reactor and collected in a solvent filled cold trap. The solvent together with lighter oil constituents were evaporated in a vacuum oven. The prepared low-volatile oil fraction for vapor pressure measurements was estimated to be about 60% by weight of the total oil of pyrolysis. A non-isothermal modification of the conventional Knudsen effusion technique was applied to track vapor pressure as a function of the evaporative loss of progressively heavier oil constituents, starting at a several percent mass loss. From the data, atmospheric boiling point values of progressively less volatile oil were derived, indicating that the boiling point increases above 550 °C (above the retorting temperature) only when about 75 wt% of the oil has vaporized.
1. Oja, V. Is it time to improve the status of oil shale science? Oil Shale, 2007, 24(2), 97–99.
2. Urov, K., Sumberg, A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops. Oil Shale, Monograph, 1999, 16(3), 1–64.
3. Oja, V., Elenurm, A., Rohtla, I., Tali, E., Tearo, E., Yanchilin, A. Comparison of oil shales from different deposits: oil shale pyrolysis and co-pyrolysis with ash. Oil Shale, 2007, 24(2), 101–108.
4. Lille, Ü. Behavior of Estonian kukersite kerogen in molecular mechanical force field. Oil Shale, 2004, 21(2), 99–114.
5. Savest, N., Oja, V., Kaevand, T., Lille, Ü. Interaction of Estonian kukersite with organic solvents: A volumetric swelling and molecular simulation study. Fuel, 2007, 86(1–2), 17–21.
http://dx.doi.org/10.1016/j.fuel.2006.06.016
6. Savest, N., Hruljova, J., Oja, V. Characterization of thermally pretreated kukersite oil shale using the solvent-swelling technique. Energ. Fuel., 2009, 23(12), 5972–5977.
http://dx.doi.org/10.1021/ef900667t
7. Solomon, P. R., Serio, M. A., Suuberg, E. M. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Prog. Energy Combust. Sci., 1992, 18(2), 133–220.
http://dx.doi.org/10.1016/0360-1285(92)90021-R
8. Kilk, K., Savest, N., Yanchilin, A., Kellogg, D. S., Oja, V. Solvent swelling of Dictyonema oil shale: Low temperature heat-treatment caused changes in swelling extent. J. Anal. Appl. Pyrol., 2010, 89(2), 261–264.
http://dx.doi.org/10.1016/j.jaap.2010.09.003
9. Smith, K. L., Smoot, L. D., Fletcher, T. H., Pugmire, R. J. The Structure and Reaction Processes of Coal. The Plenum Chemical Engineering Series: New York, 1994.
http://dx.doi.org/10.1007/978-1-4899-1322-7
10. Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A., Deshpande, G. V. General model of coal devolatilization. Energ. Fuel., 1988, 2(4), 405–422.
http://dx.doi.org/10.1021/ef00010a006
11. Niksa, S., Kerstein, A. R. FLASHCHAIN theory for rapid devolatilization kinetics. 1. Formulation. Energ. Fuel., 1991, 5, 647–665.
http://dx.doi.org/10.1021/ef00029a006
12. Grant, D. M., Pugmire, R. J., Fletcher, T. H., Kerstein, A. R. Chemical model of coal devolatilization using percolation lattice statistics. Energ. Fuel., 1989, 3(2), 175–186.
http://dx.doi.org/10.1021/ef00014a011
13. Oja, V., Suuberg, E. M. Measurements of the vapor pressures of coal tars using the nonisothermal Knudsen effusion method. Energ. Fuel., 1998, 12, 1313–1321.
http://dx.doi.org/10.1021/ef980093u
14. Oja, V., Suuberg, E. M. Development of a nonisothermal Knudsen effusion method and application to PAH and cellulose tar vapor pressure measurement. Anal. Chem., 1997, 69, 4619–4626.
http://dx.doi.org/10.1021/ac970262s
15. Shim, H.-S., Oja, V., Hajaligol, M.R. Vapor pressure measurements of tobacco pyrolysis tar by a non-isothermal Knudsen effusion method. J. Anal. Appl. Pyrol., 2003, 66(1–2), 183–190.
http://dx.doi.org/10.1016/S0165-2370(02)00113-4
16. Oja, V. Characterization of tars from Estonian Kukersite oil shale based on their volatility. J. Anal. Appl. Pyrol., 2005, 74(1–2), 55–60.
http://dx.doi.org/10.1016/j.jaap.2004.11.032
17. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damste, J. S., Tegelaar, E. W., de Leeuw, J. W. Characterization of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen. Org. Geochem., 1990, 16(4–6), 873–888.
http://dx.doi.org/10.1016/0146-6380(90)90124-I
18. Traumann, A., Tint, P., Järvik, O., Oja, V. Management of health hazards during shale oil handling. Agronomy Research, 2013, 11(2), 479–486.
19. Dushman, S. Scientific Foundations of Vacuum Technique 2nd ed.; Wiley: New York, 1962.
20. Chen, X., Oja, V., Chan, W. G., Hajaligol, M. R. Vapor pressure characterization of several phenolics and polyhydric compounds by Knudsen effusion method. J. Chem. Eng. Data, 2006, 51, 386–391.
http://dx.doi.org/10.1021/je050293h
21. Oja, V., Chen, X., Hajaligol, M. R., Chan, W. G. Sublimation thermodynamic parameters for cholesterol, ergosterol, β-sitosterol, and stigmasterol, J. Chem. Eng. Data, 2009, 54(3), 730–734.
http://dx.doi.org/10.1021/je800395m
22. Chickos, J. S., Acree, W. E., Jr. Enthalpies of vaporization of organic and organometallic compounds 1880–2002. J. Phys. Chem. Ref. Data, 2003, 32(2), 519–878.
http://dx.doi.org/10.1063/1.1529214
http://dx.doi.org/10.1063/1.1556431