Fast pyrolysis of a Dachengzi oil shale sample was studied using a Curie-point pyrolyzer, the pyrolysis products were characterized online by gas chromatography-mass spectroscopy. Nine different Curie-point temperatures were chosen to investigate product distribution regularities. Hydrocarbons were the major components of the fast pyrolysis products of oil shale. n-Alkanes were generated at all the nine temperatures, while cycloalkanes only appeared at the temperatures above 485 °C. Branched alkanes were seldom produced at all the temperature points because of the bond cleavage at the branch point. Alkenes and aromatic compounds began to be formed at 386 °C and 423 °C separately, and their molecule sizes decreased with increasing pyrolysis temperature. Various oxygen-containing compounds, including ketones, acids, alcohols, esters and phenols, were identified in the shale oil components, indicating the wide existence of oxygen-containing functional groups.
1. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 2012, 94, 333–341.
http://dx.doi.org/10.1016/j.fuel.2011.09.018
2. Batts, B. D., Fathoni, A. Z. A literature review on fuel stability studies with particular emphasis on diesel oil. Energ. Fuel., 1991, 5(1), 2–21.
http://dx.doi.org/10.1021/ef00025a001
3. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.
4. Altun, N. E., Hicyilmaz, C., Hwang, J.-Y., Bagci, A. S., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3), 211–227.
5. Yu, H., Li, S. Y., Jin, G. Z. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel. Energ. Fuel., 2010, 24(8), 4419–4424.
http://dx.doi.org/10.1021/ef100531u
6. Chen, X. B., Shen, B. X., Sun, J. P., Wang, C. X., Shan, H. H., Yang, C. H., Li, C. Y. Characterization and comparison of nitrogen compounds in hydrotreated and untreated shale oil by electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Energ. Fuel., 2012, 26(3), 1707–1714.
http://dx.doi.org/10.1021/ef201500r
7. Rovere, C. E., Crisp, P. T., Ellis, J., Korth, J. Chemical class separation of shale oils by low pressure liquid chromatography on thermally-modified adsorbants. Fuel, 1990, 69(9), 1099–1104.
http://dx.doi.org/10.1016/0016-2361(90)90062-U
8. Fletcher, T. H., Gillis, R., Adams, J., Hall, T., Mayne, C. L., Solum, M. S., Pugmire, R. J. Characterization of macromolecular structure elements from a Green River oil shale, II. Characterization of pyrolysis products by 13C NMR, GC/MS, and FTIR. Energ. Fuel., 2014, 28(5), 2959–2970.
http://dx.doi.org/10.1021/ef500095j
9. Tong, J. H., Liu, J. G., Han, X. X., Wang, S., Jiang, X. M. Characterization of nitrogen-containing species in Huadian shale oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2013, 104, 365–371.
http://dx.doi.org/10.1016/j.fuel.2012.09.042
10. Lédé, J., Broust, F., Ndiaye, F.-T., Ferrer, M. Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel, 2007, 86(12–13), 1800–1810.
http://dx.doi.org/10.1016/j.fuel.2006.12.024
11. Li, M. W., Cheng, D. S., Pan, X. H., Dou, L. R., Hou, D. J., Shi, Q., Wen, Z. G., Tang, Y. J., Achal, S., Milovic, M., Tremblay, L. Characterization of petroleum acids using combined FT-IR, FT-ICR–MS and GC–MS: Implications for the origin of high acidity oils in the Muglad Basin, Sudan. Org. Geochem., 2010, 41(9), 959–965.
http://dx.doi.org/10.1016/j.orggeochem.2010.03.006
12. Butler, E., Devlin, G., Meier, D., McDonnell, K. Fluidised bed pyrolysis of lignocellulosic biomasses and comparison of bio-oil and micropyrolyser pyrolysate by GC/MS-FID. J. Anal. Appl. Pyrol., 2013, 103, 96–101.
http://dx.doi.org/10.1016/j.jaap.2012.10.017
13. Geng, C. C., Li, S. Y., Ma, Y., Yue, C. T., He, J. L., Shang, W. Z. Analysis and identification of oxygen compounds in Longkou shale oil and Shenmu coal tar. Oil Shale, 2012, 29(4), 322–333.
http://dx.doi.org/10.3176/oil.2012.4.03
14. Zheng, D. W., Li, S. Y., Ma, G. L., Wang, H. Y. Autoclave pyrolysis experiments of Chinese Liushuhe oil shale to simulate in-situ underground thermal conversion. Oil Shale, 2012, 29(2), 103–114.
http://dx.doi.org/10.3176/oil.2012.2.02
15. Williams, P. T., Nazzal, J. M. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale. J. Anal. Appl. Pyrol., 1995, 35(2), 181–197.
http://dx.doi.org/10.1016/0165-2370(95)00908-9
16. De la Rosa, J. M., Knicker, H., López-Capel, E., Manning, D. A. C., González-Perez, J. A., González-Vila, F. J. Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Sci. Soc. Am. J., 2008, 72(1), 258–267.
http://dx.doi.org/10.2136/sssaj2007.0031
17. Lu, Q., Li, W. Z., Zhang, D., Zhu, X. F. Analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA-15 catalysts. J. Anal. Appl. Pyrol., 2009, 84(2), 131–138.
http://dx.doi.org/10.1016/j.jaap.2009.01.002
18. Wang, S. R., Guo, X. J., Liang, T., Zhou, Y., Luo, Z. Y. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technol., 2012, 104, 722–728.
http://dx.doi.org/10.1016/j.biortech.2011.10.078
19. Ross, A. B., Anastasakis, K., Kubacki, M., Jones, J. M. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J. Anal. Appl. Pyrol., 2009, 85(1–2), 3–10.
http://dx.doi.org/10.1016/j.jaap.2008.11.004
20. Strezov, V., Lucas, J. A., Evans, T. J., Strezov, L. Effect of heating rate on the thermal properties and devolatilisation of coal. J. Therm. Anal. Calorim., 2004, 78(2), 385–397.
http://dx.doi.org/10.1023/B:JTAN.0000046105.01273.61
21. Yu, J. Study and Modelling on the Interaction of Volatile Flame, CO Flame and Char Particle Combustion, PhD dissertation. Shanghai JiaoTong University, 2003.
22. Niksa, S., Lau, C.-W. Global rates of devolatilization for various coal types. Combust. Flame, 1993, 94(3), 293–307.
http://dx.doi.org/10.1016/0010-2180(93)90075-E
23. Yanik, J., Yüksel, M., Sağlam, M., Olukçu, N., Bartle, K., Frere, B. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel, 1995, 74(1), 46–50.
http://dx.doi.org/10.1016/0016-2361(94)P4329-Z
24. Wang, H., Jiang, X. M., Liu, H., Wu, S. H. Fast pyrolysis comparison of coal–water slurry with its parent coal in Curie-point pyrolyser. Energ. Convers. Manage., 2009, 50(8), 1976–1980.
http://dx.doi.org/10.1016/j.enconman.2009.04.012
25. Xu, W. C., Tomita, A. Effect of temperature on the flash pyrolysis of various coals. Fuel, 1987, 66(5), 632–636.
http://dx.doi.org/10.1016/0016-2361(87)90271-7
26. Hempfling, R., Schulten, H.-R. Chemical characterization of the organic matter in forest soils by Curie point pyrolysis-GC/MS and pyrolysis-field ionization mass spectrometry. Org. Geochem., 1990, 15(2), 131–145.
http://dx.doi.org/10.1016/0146-6380(90)90078-E
27. Deniau, I., Devol-Brown, I., Derenne, S., Behar, F., Largeau, C. Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo–Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories. Sci. Total Environ., 2008, 389(2–3), 475–485.
http://dx.doi.org/10.1016/j.scitotenv.2007.09.013
28. Pouwels, A. D., Eijkel, G. B., Boon, J. J. Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. J. Anal. Appl. Pyrol., 1989, 14(4), 237–280.
http://dx.doi.org/10.1016/0165-2370(89)80003-8
29. Liu, J. L., Jiang, J. C., Huang, H. T. Selective pyrolysis behaviors of willow catalyzed via phosphoric acid. Adv. Mat. Res., 2013, 724–725, 413–418.
http://dx.doi.org/10.4028/www.scientific.net/AMR.749.413
30. Tong, J. H., Han, X. X., Wang, S., Jiang, X. M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energ. Fuel., 2011, 25(9), 4006–4013.
http://dx.doi.org/10.1021/ef200738p
31. Cady, W. E., Seelig, H. S. Composition of shale oil. Ind. Eng. Chem., 1952, 44(11), 2636–2641.
http://dx.doi.org/10.1021/ie50515a044
32. Yürüm, Y., Levy, M. Analysis of a retort oil from an Israeli shale by gas chromatography-mass spectrometry-selected ion monitoring. Fuel, 1985, 64(1), 102–107.
http://dx.doi.org/10.1016/0016-2361(85)90287-X
33. Rebick, C. Pyrolysis of heavy hydrocarbons. In: Pyrolysis: Theory and Industrial Practice (Albright, L. F., Crynes, B. L., Corcoran, W. H., eds.). Academic Press, 1983, 69–87.
34. Fookes, C. J. R., Duffy, G. J., Udaja, P., Chensee, M. D. Mechanisms of thermal alteration of shale oils. Fuel, 1990, 69(9), 1142–1144.
http://dx.doi.org/10.1016/0016-2361(90)90071-W
35. Hatcher, P. G., Clifford, D. J. Flash pyrolysis and in situ methylation of humic acids from soil. Org. Geochem., 1994, 21(10–11), 1081–1092.
http://dx.doi.org/10.1016/0146-6380(94)90071-X
36. Van Meter, R. A., Bailey, C. W., Smith, J. R., Moore, R. T., Allbright, C. S., Jacobson, I. A., Hylton, V. M., Ball, J. S. Oxygen and nitrogen compounds in shale-oil naphtha. Anal. Chem., 1952, 24(11), 1758–1763.
http://dx.doi.org/10.1021/ac60071a015
http://dx.doi.org/10.1021/ef00038a024