ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
PYROLYSIS AND CO-PYROLYSIS OF CHINESE LONGKOU OIL SHALE AND MONGOLIAN HUOLINHE LIGNITE; pp. 151–159
PDF | doi: 10.3176/oil.2015.2.05

Authors
DEMIN HE, JUN GUAN, HAOQUAN HU, Qiumin Zhang
Abstract

Chinese Longkou oil shale (LKO) and Mongolian Huolinhe lignite (HLHC) samples were subjected to pyrolysis and co-pyrolysis in a fixed bed reactor and rapid pyrolysis equipment to investigate the processes. The results indicated that both LKO and HLHC are ideal materials for oil recovery by pyrolysis with high oil yields. The fixed bed pyrolysis showed that the syn­ergetic effect appeared with increasing oil yield and decreasing water yield, and was varying with changing mass percentage of coal. The optimum tem­perature of co-pyrolysis of LKO and HLHC in the rapid pyrolysis equipment was 510 °C. The synergetic effect was found to exist when the oil yield increased by 9% and water yield decreased by 36%.

References

  1. Qian, J. L.,Yin, L. Oil Shale – Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

  2. Purga, J. Today’s Rainbow ends in Fushun. Oil Shale, 2004, 21(4), 269–272.

  3. Ots, A., Poobus, A., Lausmaa, T. Technical and ecological aspects of shale oil and power cogeneration. Oil Shale, 2011, 28(1S), 101–112.
http://dx.doi.org/10.3176/oil.2011.1S.03

  4. Allred, V. D. Oil Shale Processing Technology. The Center for Professional Advancement, East Brunswick, New Jersey, USA, 1982.

  5. Guo, S. C., Luo, C. Q., Han, Z. Lignite retorting using solid heat carrier. Fuel Sci. Techn. Int., 1990, 8(1), 39–49.
http://dx.doi.org/10.1080/08843759008915912

  6. Guo, S. C., Luo, C. Q., Han, Z. Advanced development of new technology for lignite retorting. In: Proc. 4th Japan-China Symposium on Coal and C1 Chemistry, May 25th, 1993, Osaka, Japan, 123–128.

  7. Liao, H. Q., Li, B. Q., Zhang, B. J. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas. Fuel, 1998, 77(8), 847–851.
http://dx.doi.org/10.1016/S0016-2361(97)00257-3

  8. Siirde, A., Roos, I., Martins, A. Estimation of carbon emission factors for the Estonian shale oil industry. Oil Shale, 28(1S), 127–139.

  9. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.
http://dx.doi.org/10.1016/j.energy.2012.03.066

10. Dung, N. V. A new concept for retorting oil shales. Fuel, 1987, 66(3), 377–383.
http://dx.doi.org/10.1016/0016-2361(87)90098-6

11. Williams, P. F. V. Oil shales and their analysis. Fuel, 1983, 62(7), 756–771.
http://dx.doi.org/10.1016/0016-2361(83)90025-X

12. Burnham, A. K., McConaghy, J. R. Comparison of the acceptability of various oil shale processes. In: Proc. 26th Oil Shale Symposium. Colorado School of Mines, Golden, Colorado, USA, 16–19 October, 2006.

13. Solomon, P. R., Fletcher, T. H., Pugmire, R. J. Progress in coal pyrolysis. Fuel, 1993, 72(5), 587–597.
http://dx.doi.org/10.1016/0016-2361(93)90570-R

14. Tromp, P. J. J. Coal Pyrolysis. Ph.D. Thesis, University of Amsterdam, The Netherlands, 1987.

Back to Issue