ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
MULTI-COMPONENT SIMULATION AND KINETICS MODEL FOR CO-COMBUSTION OF HUADIAN OIL SHALE RETORTING RESIDUE AND CORNSTALKS; pp. 186–199
PDF | doi: 10.3176/oil.2015.2.08

Authors
LIU HONGPENG, SUN XIAOJIAN, WANG XUDONG, WANG QING
Abstract

A series of experiments on co-combustion of the retorting residue of Huadian oil shale and cornstalks at different blending proportions were performed on a Pyris-1 thermogravimetric analyzer (TGA) to investigate the mechanism of the reactions involved. Moreover, the abrupt curvature changes of thermogravimetric (TG) curves and the multi-peaks and -shoulders of differential thermal gravity (DTG) curves for the blends were analyzed based on a simulation model of multi-component combustion. Results showed that the processes of combustion represented a multistage procedure of a clearly segmented nature. The processes can be divided into three stages of different temperature ranges: the first stage (135–380 °C), the second stage (380–560 °C) and the third stage (560–700 °C). With increas­ing blending ratio of cornstalks, the free energy of activation of combustion in the first and second stages is much lower than that in the third stage. Meanwhile, the continuous reaction processes of the samples combustion were analyzed by the Kissinger-Akahira-Sunose (KAS) kinetics model. Results showed that the activation enthalpy, activation entropy and free energy of activation of the samples combustion in its different stages varied. Moreover, with the addition of cornstalks, the portion of the ordered structure of activated molecules increased and the combustion charac­teris­tics of the retorting residue improved.

References

  1. Giereo, R., Stille, P. Energy, Waste and the Environment: A Geochemical Perspective. The Geological Society Publishing House, London, 2004, 263–284.

  2. Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756–763.
http://dx.doi.org/10.1016/j.fuproc.2008.01.010

  3. Brendow, K. Global oil shale issues and perspectives. Oil Shale, 2003, 20(1), 81–92.

  4. Kuusik, R., Martins, A., Pihu, T., Pesur, A., Kaljuvee, T., Prikk, A., Trikkel, A., Arro, H.Fluidized-bed combustion of oil shale retorting solid waste. Oil Shale, 2004, 21(3), 237–248.

  5. Gil, M. V., Casal, D., Pevida, C., Pis, J. J., Rubiera, F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technol., 2010, 101(14), 5601–5608.
http://dx.doi.org/10.1016/j.biortech.2010.02.008

  6. Zanoni, M. A. B., Massard, H., Martins, M. F. Formulating and optimizing combustion pathways for oil shale and its semi-coke. Combust. Flame, 2012, 159, 3224–3234.
http://dx.doi.org/10.1016/j.combustflame.2012.05.005

  7. Wang, Q., Wang, H. G., Sun, B. Z., Bai, J. R., Guan, X. H. Interactions between oil shale and its semi-coke during co-combustion. Fuel, 2009, 88(8), 1520–1529.
http://dx.doi.org/10.1016/j.fuel.2009.03.010

  8. Wang, Q., Zhao, W. Z., Liu, H. P., Jia, C. X., Li, S. H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Appl. Energ., 2011, 88, 2080–2087.
http://dx.doi.org/10.1016/j.apenergy.2010.12.073

  9. Sun, B.-Z., Wang, Q., Shen, P.-Y., Qin, H., Li, S.-H. Kinetic analysis of co-combustion of oil shale semi-coke with bituminous coal. Oil Shale, 2012, 29(1), 63–75.
http://dx.doi.org/10.3176/oil.2012.1.06

10. Chen, L. H., Li, X. B., Wen, W. Y., Jia, J. D., Li, G. Q., Deng, F. The status, predicament and countermeasures of biomass secondary energy production in China. Renewable and Sustainable Energy Reviews, 2012, 16, 6212–6219.
http://dx.doi.org/10.1016/j.rser.2012.07.006

11. Wang, C. P., Wang, F. Y., Yang, Q. R., Liang, R. G. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenerg., 2009, 33(1), 50–56.
http://dx.doi.org/10.1016/j.biombioe.2008.04.013

12. Sultana, A., Kumar, A. Ranking of biomass pellets by integration of economic, environmental and technical factors. Biomass Bioenerg., 2012, 39, 344–355.
http://dx.doi.org/10.1016/j.biombioe.2012.01.027

13. Nimmo, W., Daood, S. S., Gibbs, B. M. The effect of O2 enrichment on NOx forma­tion in biomass co-fired pulverized coal combustion. Fuel, 2010, 89(10), 2945–2952.
http://dx.doi.org/10.1016/j.fuel.2009.12.004

14. Syed, S., Qudaih, R., Talab, I., Janajreh, I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 2011, 90(4), 1631–1637.
http://dx.doi.org/10.1016/j.fuel.2010.10.033

15. Garcia, A. N., Font, R. Thermogravimetric kinetic model of pyrolysis and combustion of an ethylene-vinyl acetate copolymer refuse. Fuel, 2004, 83(9), 1165–1173.
http://dx.doi.org/10.1016/j.fuel.2003.10.029

16. Várhegyi, G., Szabó, P., Jakab, E., Till, F., Richard, J.-R. Mathematical model­ing of char reactivity in Ar-O2 and CO2-O2 mixtures. Energ. Fuel., 1996, 10(6), 1208–1214.
http://dx.doi.org/10.1021/ef950252z

17. Yinnon, H., Uhlmann, D. R. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory. J. Non-cryst. Solids, 1983, 54(3), 253–275.
http://dx.doi.org/10.1016/0022-3093(83)90069-8

18. Afify, N. Calorimetric study on the crystallization of a Se0.8Te0.2 chalcogenide glass. J. Non-cryst. Solids, 1992, 142, 247–259.
http://dx.doi.org/10.1016/S0022-3093(05)80031-6

19. Finney, E. E., Finke, R. G. Is there a minimal chemical mechanism underlying classical Avrami-Erofe’ev treatments of phase-transformation kinetic data? Chem. Mater., 2009, 21(19), 4692–4705.
http://dx.doi.org/10.1021/cm9018716

20. Kreevoy, M. M., Truhlar, D. G. Transition State Theory in Investigation of Rates and Mechanisms of Reactions. John Wiley & Sons, New York, 1986.

21. Spencer, J. N., Bodner, G. M., Rickard, L. H. Chemistry – Structure & Dynamics. John Wiley & Sons, New York, 2010.

22. Atkins, P. W. Physical Chemistry. Oxford University Press, Oxford, 1998.

23. Starink, M. J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermo­chim. Acta, 2003, 404(2), 163–176.
http://dx.doi.org/10.1016/S0040-6031(03)00144-8

24. Yao, F., Wu, Q. L., Lei, Y., Guo, W. H., Xu, Y. J. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stabil., 2008, 93(1), 90–98.
http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.012

25. Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn., 1965, 38(11), 1881–1886.
http://dx.doi.org/10.1246/bcsj.38.1881

26. Oza, S., Ning, H., Ferguson, I., Lu, N. Effect of surface treatment on thermal stability of the hemp-PLA composites: Correlation of activation energy with thermal degradation. Compos. Part B-Eng., 2014, 67, 227–232.
http://dx.doi.org/10.1016/j.compositesb.2014.06.033

Back to Issue