In this paper, an oil shale comprehensive utilization system based on Huadian-type retorting technique is constructed for producing shale oil, electricity, heat and construction materials. The system presented in this work aims at increasing resource utilization efficiency, improving process efficacy and reducing pollutant emission. Shale oil as a valuable product can be obtained by retorting. Meanwhile, during this process, the byproducts, retorting gas and semi-coke, not only can be used to provide sufficient energy for retorting, but can also be combusted efficiently in sequent subsystems for electricity generation and district heating. Moreover, the discharged shale ash can be used to produce construction materials. The proposed system is modeled and evaluated by the process simulation software Aspen Plus. The simulation results indicate that the scheme of oil shale comprehensive utilization has several advantages over oil shale retorting or combustion merely, and about 0.161 million t/a shale oil and 123.82 MW power can be produced in this system. Also, increasing the mass fraction of oil shale for retorting would exert a positive impact on the system’s economics, which is especially important considering the rising oil prices.
1. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.
2. Qian, J. L., Wang, J. Q., Li, S. Y. World oil shale. Energy of China, 2006, 28(8), 16–19 (in Chinese).
3. Qian, J. L., Wang, J. Q., Li, S. Y. World oil shale utilization and its future. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 877–887 (in Chinese).
4. Liu, Z. J., Dong, Q. S., Ye, S. Q., Zhu, J. W., Guo, W., Li, D. C., Liu, R., Zhang, H. L., Du, J. F. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese).
5. Bai, J. R., Wang, Q., Sun, B. Z., Liu, H. P. Basic physicochemical characteristics of the Huadian oil shale semi-cokes. Journal of Jilin University (Earth Science Edition), 2010, 40(4), 905–911 (in Chinese).
6. Han, X. X., Cui, Z. G., Jiang, X. M., Liu, J. G. Regulating characteristics of loop seal in a 65 t/h oil shale-fired circulating fluidized bed boiler. Powder Technol., 2007, 178(2), 114–118.
http://dx.doi.org/10.1016/j.powtec.2007.04.015
7. Li, S. Y., Ma, Y., Qian, J. L. Global oil shale research, development and utilization today and an overview of three oil shale symposiums in 2011. Sino-Global Energy, 2012, 17(2), 8–17 (in Chinese).
8. Li, S. Y., Tang, X., H. E., Qian, J. L. Global oil shale development and utilization today – two oil shale symposiums held in 2012. Sino-Global Energy, 2013, 18(1), 3–11 (in Chinese).
9. Qian, J. L., Wang, J. Q., Li, S. Y. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.
10. Zhang, Q. M., Guan, J., He, D. M. Typical technologies for oil shale retorting. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 1020–1026 (in Chinese).
11. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.
12. Wang, Q., Bai, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale comprehensive utilization. Oil Shale, 2005, 22(3), 305–315.
13. Li, S. Y., Yue, C. T. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.
http://dx.doi.org/10.1016/S0016-2361(02)00268-5
14. Al-Ayed, O. S., Matouq, M., Anbar, Z., Khaleel, A. M., Abu-Nameh, E. Oil shale pyrolysis kinetics and variable activation energy principle. Appl. Energ., 2010, 87(4), 1269–1272.
http://dx.doi.org/10.1016/j.apenergy.2009.06.020
15. Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95(1), 131–135.
http://dx.doi.org/10.1016/j.fuel.2011.11.029
16. Sun, J., Wang, Q., Sun, D. H., Li, S. H., Sun, B. Z., Bai, J. R. Integrated technology for oil shale comprehensive utilization and cycling economy. Modern Electric Power, 2007, 24(5), 57–67 (in Chinese).
17. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.
http://dx.doi.org/10.1016/j.energy.2012.03.066
18. Dung, N. V., Yip, V. Processing Stuart oil shale in an integrated retorting/ combustion recycle system. Fuel, 1990, 69(9), 1129–1133.
http://dx.doi.org/10.1016/0016-2361(90)90068-2
19. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.
http://dx.doi.org/10.1016/j.energy.2006.05.001
20. Qing, W., Zhang, F. Z., Liu, H. P., Wang, Z. F., Sun, K. Simulation of dry distillation process of oil shale in heat gas. CIESC Journal, 2012, 63(2), 612–617 (in Chinese).
21. Wang, Q., Zhao, W. Z., Liu, H. P., Jia, C. X., Li, S. H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Appl. Energ., 2011, 88(6), 2080–2087.
http://dx.doi.org/10.1016/j.apenergy.2010.12.073
22. Sun, B. Z., Wang, Q., Shen, P. Y., Liu, H. P., Qin, H., Li, S. H. Experimental investigation on combustion characteristics of oil shale semi-coke and bituminous coal blends. Journal of China Coal Society, 2010, 35(3), 476–480 (in Chinese).
23. Han, X. X., Jiang, X. M., Yu, L. J., Cui, Z. G. Change of pore structure of oil shale particles during combustion. Part 1. Evolution mechanism, Energ. Fuel., 2006, 20(6), 2408–2412.
http://dx.doi.org/10.1021/ef0603277
24. Trikkel, A., Kuusik, R., Martins, A,. Pihu, T,. Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756–763.
http://dx.doi.org/10.1016/j.fuproc.2008.01.010
25. Jiang, X. M., Wang, Q., Zhang, J. B., Li, X. H., Sun, J., Qin, Y. K. Design and operation of oil-shale fired circulating fluidized bed boilers. Power Engineering, 1998, 13(3), 22–28 (in Chinese).
26. Han, X. X., Jiang, X. M., Liu, D. C., Chen, H. P., Zheng, C. G. Study of large size oil shale-fired circulating fluidized bed boiler. Electric Power, 2003, 36(1), 20–23 (in Chinese).
27. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93(1), 172–180.
http://dx.doi.org/10.1016/j.fuel.2011.08.050
28. Bao, C. L., Zhang, J. H., Liu, Z. J., Wang, Y., Sheng, J,. Wang, P., Lan, X. Y. Development of porous construction ceramic using oil shale. Journal of Jilin University (Earth Science Edition), 2007, 38(4), 600–603.
29. Wu, Q. C., Wang, Z. F., Cao, Q. X., Wang, H. Z., Sun, C. H., Yao, T. Q., Liu, M. L. An oil shale retort reactor with a capacity of 300 t/d. Chinese patent CN201313882Y, 2009 (in Chinese).
30. Wu, Q. C., Wang, H. Y., Wang, Z. F., Zhang, W. J., Guo, H. F., Liu, C. The Huadian-type oil shale retorting technique and equipment. Chinese patent CN101942313 A, 2011 (in Chinese).
31. Bai, J. R., Bai, Z., Wang, Q., Wang, Z. F., Sun, K. Process simulation for Huadian-type oil shale retorting system by Aspen Plus. CIESC Journal, 2012, 63(12), 4075–4081 (in Chinese).