Semi-coke is classified as an environmentally harmful residue of oil shale industry due to its toxic components: several organic and inorganic compounds – oil products, asphaltenes, phenols, PAHs, sulphuric compounds. The aim of the present work was to compare the abundances and species compositions of soil invertebrate assemblages (Collembola, Lumbricidae, Araneae, Myriapoda, Coleoptera) in the artificial substrate from vegetated and bare residue sites of semi-coke heaps of Estonian oil shale industry. Invertebrate communities in semi-coke heaps were studied at three heights of each heap slope; all sampling points in the heaps were divided into four groups based on plant cover. The authors concluded that the communities of micro- and macroarthropods and earthworms in oil-shale processing waste heaps were formed under certain conditions – a high pH and extremely low moisture. The presence of several invertebrate groups (springtails, earthworms, epigeic predators, etc.) and soil communities can be used for monitoring the success in restoration.
1. Khitarishvili, T. Estonia shifts focus. Cleansing oil shale. IEA Energy: The Journal of the International Energy Agency, 2013, 5, 42–43.
2. Raukas, A., Siirde, A. New trends in Estonian oil shale industry. Oil Shale, 2012, 29(3), 203–205.
http://dx.doi.org/10.3176/oil.2012.3.01
3. Kattai, V. Oil Shale – Source of Oil. Eesti Geoloogiakeskus, Tallinn, 2006 (in Estonian with English summary).
4. Orupõld, K., Habicht, J., Tenno, T. Leaching behaviour of oil shale semicoke: compliance with the waste acceptance criteria for landfills. Oil Shale, 2008, 25(2), 267–275.
http://dx.doi.org/10.3176/oil.2008.2.08
5. Pae, T., Luud, A., Sepp, M. Artificial mountains in North-East Estonia: monumental dumps of ash and semi-coke. Oil Shale, 2005, 22(3), 333–343.
6. Truu, J., Heinaru, E., Vedler, E., Juhanson, J., Viirmäe, M., Heinaru, A. Formation of microbial communities in oil shale chemical industry solid wastes during phytoremediation and bioaugmentation. In: Bioremediation of Soils Contaminated with Aromatic Compounds. NATO Science Series, 2007, 76, Springer, Dordrecht, 2007, 57–66.
7. Wong, M. H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 2003, 50(6), 775–780.
http://dx.doi.org/10.1016/S0045-6535(02)00202-3
8. Gardner, J. Rehabilitating mines to meet land use objectives: bauxite mining in the jarrah forest of Western Australia. Unasylva, No. 207 – Rehabilitation of degraded sites, 2001, 52(4), 3–8.
9. Majer, J. D., Brennan, K. E. C., Moir, M. L. Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor. Ecol., 2007, 15(4), S104–S115.
http://dx.doi.org/10.1111/j.1526-100X.2007.00298.x
10. Holec, M., Frouz, J. Ant (Hymenoptera: Formicidae) communities in reclaimed and unreclaimed brown coal mining spoil dumps in the Czech Republic. Pedobiologia, 2005, 49, 345–357.
http://dx.doi.org/10.1016/j.pedobi.2005.03.001
11. Topp, W., Simon, M., Kautz, G., Dworschak, U., Nicolini, F., Prückner, S. Soil fauna of a reclaimed lignite open-cast mine of the Rhineland: improvement of soil quality by surface pattern. Ecol. Eng., 2001, 17(2–3), 307–322.
http://dx.doi.org/10.1016/S0925-8574(00)00147-6
12. Courtney, R., O’Neill, N., Harrington, T., Breen, J. Macro-arthropod succession in grassland growing on bauxite residue. Ecol. Eng., 2010, 36, 1666–1671.
http://dx.doi.org/10.1016/j.ecoleng.2010.07.006
13. Cortet, J., Gomot-De Vauflery, A., Poinsot-Balaguer, N., Gomot, L., Texier, C, Cluzeau, D. The use of invertebrate soil fauna in monitoring pollutant effects. Eur. J. Soil Biol., 1999, 35(3), 115–134.
http://dx.doi.org/10.1016/S1164-5563(00)00116-3
14. Haimi, J. Decomposer animals and bioremediation of soils. Environ. Pollut., 2000, 107(2), 233–238.
http://dx.doi.org/10.1016/S0269-7491(99)00142-6
15. Nei, L., Kruusma, J., Ivask, M., Kuu, A. Novel approaches to bioindication of heavy metals in soils contaminated by oil shale wastes. Oil Shale, 2009, 26(3), 424–431.
http://dx.doi.org/10.3176/oil.2009.3.07
16. Bradshaw, A. The use of natural processes in reclamation – advantages and difficulties. Landscape Urban Plan., 2000, 51(2–4), 89–100.
http://dx.doi.org/10.1016/S0169-2046(00)00099-2
17. Platen, H., Wirtz, A. Measurement of the Respiration Activity of Soils Using the OxiTop Control Measuring System. Basic Principles and Process Characteristic Quantities. WTW (Wissenschaftlich-Technische Werkstätten), GmbH & Co. KG, Weilheim, Germany, 1999.
18. Coleman, D. C., Crossley, D. A., Jr, Hendrix, P. F. Fundamentals of Soil Ecology. Elsevier Academic Press, London, 2004.
19. Gunn, A. The use of mustard to estimate earthworm population. Pedobiologia, 1992, 36(2), 65–67.
20. Bouchè, M. B. Strategies lombriciennes. In: Soil Organisms as Components of Ecosystem (Lohm, U., Persson, T., eds.). Ecological Bulletin, 1977, 25, 122–132.
21. Freude, H., Harde, K. W., Lohse, G. A. Beetles of Central Europe, Band 2, Adephaga 1. Goecke & Evers Verlag, Krefeld, 1976 (in German).
22. Heimer, S., Nentwig, W. Spiders of Central Europe. Blackwell Wissenschafts-Verlag, 1991 (in German).
23. Roberts, M. J. Spiders of Britain and Northern Europe. Harper Collins Publishers, 1995.
24. Merivee, E., Remm, H. Key to Coleoptera. Valgus, Tallinn, 1973 (in Estonian).
25. ter Braak, C. J. F. Canonical community ordination. Part 1: Basic theory and linear methods. Ecoscience, 1994, 1(2), 127–140.
26. Mrzljak, J., Wiegleb, G. Spider colonization of former brown coal mining areas – time or structure dependent? Landscape Urban Plan., 2000, 51(2–4), 131–146.
http://dx.doi.org/10.1016/S0169-2046(00)00104-3
27. Dunger, W. The return of soil fauna to coal mined areas in the German Democratic Republic. In: Animals in Primary Succession: The Role of Fauna in Reclaimed Lands (Majer, J. D., ed.). Cambridge University Press, 1989, 307–337.
28. Dunger, W., Schulz, H.-J., Zimdars, B., Hohberg, K. Changes in collembolan species composition in Eastern German mine sites over fifty years of primary succession. Pedobiologia, 2004, 48(5–6), 503–517.
http://dx.doi.org/10.1016/j.pedobi.2004.07.005
29. Dilly, O., Pfeiffer, E.-M., Irmler, U. Soil phases: the living phase. In: Soils: Basic Concepts and Future Challenges (Certini, G., Scalenghe, R., eds.). Cambridge University Press, Cambridge, 2006, 91–102.
http://dx.doi.org/10.1017/CBO9780511535802.008
30. Timm, T. A Guide to the Estonian Annelida. Naturalist’s Handbooks 1. Estonian Academy Publishers, Tartu-Tallinn, 1999.
31. Pižl, V. Development of earthworm populations in afforested colliery spoil heaps in northern Bohemia, Czech Republic. Pedobiologia, 1999, 43, 691–697.
32. Eijsackers, H. Earthworms as colonisers: Primary colonisation of contaminated land, and sediment and soil waste deposits. Sci. Total Environ., 2010, 408(8), 1759–1769.
http://dx.doi.org/10.1016/j.scitotenv.2009.12.046
33. Kuu, A., Ivask, M. Distribution of Octolasion cyaneum (Savigny, 1826) in Estonia 1993–2008. Zool. Middle East, 2010, 51, Suppl. 2, 75–81.
http://dx.doi.org/10.1080/09397140.2010.10638460
34. Kalda, K., Ivask, M., Kuu, A., Peda, J., Kutti, S. Earthworms in waste heaps of oil-shale industry. In: Vermicomposting and Vermiculture as basis of ecological landownership in XXI century – problems, outlooks, achievements. Minsk, 2013, 153–158.
35. Boyer, S., Wratten, S. D. The potential of earthworms to restore ecosystem services after opencast mining – a review. Basic Appl. Ecol., 2010, 11(3), 196–203.
http://dx.doi.org/10.1016/j.baae.2009.12.005
36. Eijsackers, H., Bruggeman, J., Harmsen, J., Kort, Th., De Schakel, A. Colonization of PAH-contaminated dredged sediment by earthworms. Appl. Soil Ecol., 2009, 43, 216–225.
http://dx.doi.org/10.1016/j.apsoil.2009.08.003
37. Meriste, M. Spider fauna of coastal and floodplain meadows in Matsalu (Estonia), influence of flooding and management. In: Books of Abstracts: 18th International Congress of Arachnology, Siedlce, Poland, 11–17.07.2010 (Zabka, M., ed.), 2010, 293–294.
38. Bröring, U., Mrzljak, J., Niedringhaus, R., Wiegleb, G. Soil zoology I: arthropod communities in open landscapes of former brown coal mining areas. Ecol. Eng., 2005, 24(1–2), 121–133.
http://dx.doi.org/10.1016/j.ecoleng.2004.12.012
39. Bell, J. R., Wheater, C. P., Cullen, W. R. The implications of grassland and heathland management for the conservation of spider communities: a review. J. Zool., 2001, 255(3), 277–387.
http://dx.doi.org/10.1017/S0952836901001479
40. Dennis, P., Young, M. R, Bentley, C. The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agr. Ecosyst. Environ., 2001, 86(1), 39–57.
http://dx.doi.org/10.1016/S0167-8809(00)00263-2
41. Koponen, S., Koneva, G. G. Spiders along a pollution gradient (Araneae). In: European Arachnology 2005 (Deltshev, C., Stoev, P., eds.), Acta zoologica bulgarica, 2005, Suppl. 1, 131–136.
42. Kielhorn, K., Keplin, B., Hüttl, R. Ground beetle communities on reclaimed mine spoil: effects of organic matter application and revegetation. Plant Soil, 1999, 213(1–2), 117–125.
http://dx.doi.org/10.1023/A:1004508317091