ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
SOLVENT SWELLING OF KUKERSITE OIL SHALE MACROMOLECULAR ORGANIC MATTER IN BINARY MIXTURES: IMPACT OF SPECIFICALLY INTERACTING SOLVENTS; pp. 365–376
PDF | doi: 10.3176/oil.2014.4.05

Authors
JELENA HRULJOVA, NATALJA SAVEST, Alexey Yanchilin, Vahur Oja, ERIC M. SUUBERG
Abstract

The present work deals with the volumetric solvent swelling of the cross-linked macromolecular organic matter (kerogen) of Estonian kukersite oil shale in binary solvent mixtures. A two-step solvent swelling procedure was used in which swelling was performed first in one solvent followed by the addition of a second solvent. The results confirm the important role of specific interactions in determining the swelling behavior of this kerogen. The kerogen swells more in strong electron donor solvents that are able to break specific kerogen–kerogen interaction such as hydrogen bonds. When comparing the maximum swelling achieved, the binary solvent mixtures did not perform any better than strong electron donor solvents, regardless of how the experiments were conducted.

References

  1. Flory, P. J. Principles of Polymer Chemistry. Cornell University Press, New York, 1953.

  2. Kovac, J. Modified Gaussian model for rubber elasticity. Macromolecules, 1978, 11(2), 362–365.
http://dx.doi.org/10.1021/ma60062a016

  3. Barr-Howell, B. D., Peppas, N. A. Importance of junction functionality in highly crosslinked polymers. Polym. Bull., 1985, 13(2), 91–96.

  4. Larsen, J. W., Li, S. Solvent swelling studies of Green River kerogen. Energ. Fuel., 1994, 8(4), 932–936.
http://dx.doi.org/10.1021/ef00046a017

  5. Ballice, L. Solvent swelling studies of Göynük (Kerogen Type-I) and Beypazari oil shales (Kerogen Type-II). Fuel, 2003, 82(11), 1317–1321.
http://dx.doi.org/10.1016/S0016-2361(03)00026-7

  6. Kilk, K., Savest, N., Yanchilin, A., Kellogg, D. S., Oja, V. Solvent swelling of Dictyonema oil shale: Low temperature heat-treatment caused changes in swelling extent. J. Anal. Appl. Pyrol., 2010, 89(2), 261–264.
http://dx.doi.org/10.1016/j.jaap.2010.09.003

  7. Oja, V., Suuberg, E. M. Oil shale processing, chemistry and technology. In: Fossil Energy, Selected Entries from the Encyclopedia of Sustainability Science and Technology (Malhotra, R., ed.). Springer Science + Business Media, New York, 2013, 99–148.

  8. Oja, V. Characterization of tars from Estonian Kukersite oil shale based on their volatility. J. Anal. Appl. Pyrol., 2005, 74(1–2), 55–60.
http://dx.doi.org/10.1016/j.jaap.2004.11.032

  9. Oja, V., Elenurm, A., Rohtla, I., Tali, E., Tearo, E., Yanchilin, A. Comparison of oil shales from different deposits: Oil shale pyrolysis and co-pyrolysis with ash. Oil Shale, 2007, 24(2), 101–108.

10. Urov, K., Sumberg, A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops. Oil Shale, 1999, 16(3 Special: monograph), 1–64.

11. Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., Freund, H., Siskin, M., Bence, A. E., Curry, D. J., Solum, M., Pugmire, R. J., Vandenbroucke, M., Leblond, M., Behar, F. Direct characteriza­tion of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energ. Fuel., 2007, 21(3), 1548–1561.
http://dx.doi.org/10.1021/ef060321h

12. Koel, M., Ljovin, S., Hollis, K., Rubin, J. Using neoteric solvents in oil shale studies. Pure Appl. Chem., 2001, 73(1), 153–159.
http://dx.doi.org/10.1351/pac200173010153

13. Hruljova, J., Savest, N., Oja, V., Suuberg, E. M. Kukersite oil shale kerogen solvent swelling in binary mixtures. Fuel, 2013, 105, 77–82.
http://dx.doi.org/10.1016/j.fuel.2012.06.085

14. Koch, R. P., Kirret, O. G., Oamer, P. E., Ahelik, V. R., Kõrts, A. V. Studies on the flotation process of Estonian kukersite. In: All-Union Conference on the Benefication of Oil Shales. Academy of Sciences USSR, Moscow, 1973, 115–122 (in Russian).

15. Karger, B. L., Snyder, L. R., Eon, C. An expanded solubility parameter treat­ment for classification and use of chromatographic solvents and adsorbents: Parameters for dispersion, dipole and hydrogen bonding interactions. J. Chromatogr. A, 1976, 125(1), 71–88.
http://dx.doi.org/10.1016/S0021-9673(00)93812-3

16. Belmares, M., Blanco, M., Goddard, W. A., Ross, R. B., Caldwell, G., Chou, S. H., Pham, J., Olofson, P. M., Thomas, C. Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J. Comput. Chem., 2004, 25(15), 1814–1826.
http://dx.doi.org/10.1002/jcc.20098

17. Behbehani, G. R., Hamedi, M., Rajabi, F. H. The solvation of urea, tetra­methylurea, TMU, in some organic solvents. Int. J. Vib. Spectrosc., 2001, 5(6) [http://www.ijvs.com/volume5/edition6/section3.html].

18. Malavolta, L., Oliveira, E., Cilli, E. M., Nakaie, C. R. Solvation of polymers as model for solvent effect investigation: proposition of a novel polarity scale. Tetrahedron, 2002, 58(22), 4383–4394.
http://dx.doi.org/10.1016/S0040-4020(02)00417-9

19. Hansen, C. M. Hansen Solubility Parameters: A User's Handbook. CRC Press, 2000.

20. Mayer, U., Gutmann, V., Gerger, W. The acceptor number – A quantitative empirical parameter for the electrophilic properties of solvents. Monatsh. Chem., 1975, 106(6), 1235–1257.
http://dx.doi.org/10.1007/BF00913599

21. Savest, N., Hruljova, J., Oja, V. Characterization of thermally pretreated kukersite oil shale using the solvent-swelling technique. Energ. Fuel., 2009, 23(12), 5972–5977.
http://dx.doi.org/10.1021/ef900667t

22. Hruljova, J., Järvik, O., Oja, V. Application of differential scanning calorimetry to study solvent swelling of kukersite oil shale macromolecular organic matter: A comparison with the fine-grained sample volumetric swelling method. Energ. Fuel., 2014, 28(2), 840–847.
http://dx.doi.org/10.1021/ef401895u

23. Savest, N., Oja, V., Kaevand, T., Lille, Ü. Interaction of Estonian kukersite with organic solvents: A volumetric swelling and molecular simulation study. Fuel, 2007, 86(1–2), 17–21.
http://dx.doi.org/10.1016/j.fuel.2006.06.016

24. Suuberg, E. M., Otake, Y., Langner, M. J., Leung, K. T., Milosavljevic, I. Coal macromolecular network structure analysis: solvent swelling thermodynamics and its implications. Energ. Fuel., 1994, 8(6), 1247–1262.
http://dx.doi.org/10.1021/ef00048a013

25. Yun, Y., Suuberg, E. M. Cooperative effects in solvent swelling of a bituminous coal. Energ. Fuel., 1998, 12(4), 798–800.
http://dx.doi.org/10.1021/ef9800157

26. O'Kane, J. M., Sherrington, D. C. Hysteresis-like behavior in the swelling/ deswelling of polystyrene cross-linked resins using binary solvent mixtures. Macromolecules, 1990, 23(25), 5286–5291.
http://dx.doi.org/10.1021/ma00227a018

27. Larsen, J. W., Gurevich, I., Glass, A. S., Stevenson, D. S. A method for count­ing the hydrogen-bond cross-links in coal. Energ. Fuel., 1996, 10(6), 1269–1272.
http://dx.doi.org/10.1021/ef960004i

Back to Issue