ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
LEACHING BEHAVIOUR OF ESTONIAN OIL SHALE ASH-BASED CONSTRUCTION MORTARS; pp. 394–411
PDF | doi: 10.3176/oil.2014.4.07

Authors
NATALYA IRHA, MAI UIBU, JEKATERINA JEFIMOVA, Lembi-Merike Raado, Tiina Hain, REIN KUUSIK
Abstract

To estimate the environmental properties of oil shale ash-based mortars the leaching of harmful components was studied. The leachates were highly alkaline. The predominant ions were Ca2+, K+, Na+, SO42-. The leach­able content of soluble components in PF ash mortars was higher in com­parison with that in CFB ash mortars. Results indicated that over curing time the fraction of readily soluble inorganic components decreased and the mobility of potentially hazardous Cd and Zn did not increase. Addition of bypass dust could affect the content of leachable ions. Results give new knowledge about the environmental properties of oil shale ash-based materials, including backfilling composites for underground mining technology.

References

  1. Arro, H., Prikk, A., Pihu, T. Combustion of Estonian oil shale in fluidized bed boilers, heating value of fuel, boiler efficiency and CO2 emissions. Oil Shale, 2005, 22(4S), 399–406.

  2. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda, Tallinn, 2006.

  3. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.

  4. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
http://dx.doi.org/10.3176/oil.2010.4.07

  5. Saether, O. M., Banks, D., Kirso, U., Bityukova, L., Sorlie, J.-E. The chemistry and mineralogy of waste from retorting and combustion of oil shale. In: Energy, Waste, and the Environment: A Geochemical Perspective (Gieré, R., Stille, P., eds.), Geological Society Special Publication 236, Bath, UK, 2004, 263–284.

  6. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93, 172–180.
http://dx.doi.org/10.1016/j.fuel.2011.08.050

  7. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
http://dx.doi.org/10.3176/oil.2012.4.08

  8. Aunela-Tapola, L. A., Frandsen, F. J., Häsänen, E. K. Trace metal emissions from the Estonian oil shale fired power plant. Fuel Process. Technol., 1998, 57(1), 1–24.
http://dx.doi.org/10.1016/S0378-3820(98)00069-1

  9. Pets, L. Depositions of macro- and microelements from atmospheric emission of oil shale ashes in northeastern Estonia. Oil Shale, 1997, 14(2), 163–170.

10. Kirso, U., Irha, N., Reinik, J., Urb, G., Laja, M. The role of laboratory and field leaching tests in hazard identification for solid material. Altern. Lab. Anim., 2007, 35(1), 119–122.

11. Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E., Loosaar, J. Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation. Fuel Process. Technol., 2013, 115, 174–181.
http://dx.doi.org/10.1016/j.fuproc.2013.06.001

12. Izquierdo, M., Querol, X. Leaching behaviour of elements from coal combus­tion fly ash: An overview. Int. J. Coal Geol., 2012, 94(1), 54–66.
http://dx.doi.org/10.1016/j.coal.2011.10.006

13. Ramesh, A., Koziński, J. A. Investigations of ash topography/morphology and their relationship with heavy metals leachability. Environ. Pollut., 2001, 111, 255–262.
http://dx.doi.org/10.1016/S0269-7491(00)00062-2

14. Ram, L. C., Srivastava, N. K., Tripathi, R. C., Thakur, S. K., Sinha, A. K., Jha, S. K., Masto, R. E., Mitra, S. Leaching behavior of lignite fly ash with shake and column tests. Environ. Geol., 2007, 51(7), 1119–1132.
http://dx.doi.org/10.1007/s00254-006-0403-1

15. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic trans­forma­tion and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1–3), 567–573.
http://dx.doi.org/10.1016/j.jhazmat.2010.08.073

16. Kirso, U., Irha, N., Steinnes, E. Comparison of the laboratory and long term field leaching tests as analytical tools for evaluating the environmental impact of trace metals by solid wastes landfilling or soil amendment. 241st ACS National Meeting & Exposition, Division of Env. Chem. March 27–31, 2011, Anaheim, California, USA.

17. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., Bondarenko, O., Kanarbik, L., Sihtmäe, M., Aruoja, V., Schvede, H., Kahru, A. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229–230, 192–200.
http://dx.doi.org/10.1016/j.jhazmat.2012.05.095

18. Kuusik, R., Paat, A., Veskimäe, H., Uibu, M. Transformations in oil shale ash at wet deposition. Oil Shale, 2004, 21(1), 27–42.

19. Liira, M., Kirsimäe, K., Kuusik, R., Mõtlep, R. Transformation of calcareous oil shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel, 2009, 88(4), 712–718.
http://dx.doi.org/10.1016/j.fuel.2008.08.012

20. Sanchez, F., Gervais, C., Garrabrants, A. C., Barna, R., Kosson, D. S. Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting. Waste Manage., 2002, 22(2), 249–260.
http://dx.doi.org/10.1016/S0956-053X(01)00076-9

21. Jankowski, J., Ward, C. R., French, D., Groves, S. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic eco­systems. Fuel, 2006, 85(2), 243–256.
http://dx.doi.org/10.1016/j.fuel.2005.05.028

22. Al-Otoom, A. Y. Utilization of oil shale in the production of Portland clinker. Cement Concrete Comp., 2006, 28(1), 3–11.
http://dx.doi.org/10.1016/j.cemconcomp.2005.06.006

23. Oymael, S. Suitability of oil shale ash as a constituent of cement. Oil Shale, 2007, 24(1), 45–58.

24. Cinquepalmi, M. A., Mangialardi, T., Panei, L., Paolini, A. E., Piga, L. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics. J. Hazard. Mater., 2008, 151(2–3), 585–593.
http://dx.doi.org/10.1016/j.jhazmat.2007.06.026

25. Blissett, R. S., Rowson, N. A. A review of the multi-component utilisation of coal fly ash. Fuel, 2012, 97, 1–23.
http://dx.doi.org/10.1016/j.fuel.2012.03.024

26. Kikas, W. Composition and binder properties of Estonian kukersite oil-shale ash. ZKG Int., 1997, 50(2), 112–126.

27. Raado, L.-M., Tuisk, T., Rosenberg, M., Hain, T. Durability behavior of Portland burnt oil shale cement concrete. Oil Shale, 2011, 28(4), 507–515.
http://dx.doi.org/10.3176/oil.2011.4.04

28. Smadi, M. M., Haddad, R. H. The use of oil shale ash in Portland cement concrete. Cement Concrete Comp., 2003, 25(1), 43–50.
http://dx.doi.org/10.1016/S0958-9465(01)00054-3

29. Al-Hasan, M. Behavior of concrete made using oil shale ash and cement mixtures. Oil Shale, 2006, 23(2), 135–143.

30. van der Sloot, H. A. Characterization of the leaching behaviour of concrete mortars and of cement–stabilized wastes with different waste loading for long term environmental assessment. Waste Manage., 2002, 22(2), 181–186.
http://dx.doi.org/10.1016/S0956-053X(01)00067-8

31. Susset, B., Grathwohl, P. Leaching standards for mineral recycling materials – a harmonized regulatory concept for the upcoming German Recycling Decree. Waste Manage., 2011, 31(2), 201–214.
http://dx.doi.org/10.1016/j.wasman.2010.08.017

32. Müllauer, W., Beddoe, R. E., Heinz, D. Effect of carbonation, chloride and external sulphates on the leaching behaviour of major and trace elements from concrete. Cement Concrete Comp., 2012, 34(5), 618–626.
http://dx.doi.org/10.1016/j.cemconcomp.2012.02.002

33. Yu, Q., Nagataki, S., Lin, J., Saeki, T., Hisada, M. The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash. Cement Concrete Res., 2005, 35(6), 1056–1063.
http://dx.doi.org/10.1016/j.cemconres.2004.03.031

34. Adamson, J., Irha, N., Adamson, K., Steinnes, E., Kirso, U. Effect of oil shale ash application on leaching behavior of arable soils: an experimental study. Oil Shale, 2010, 27(3), 250–257.
http://dx.doi.org/10.3176/oil.2010.3.06

35. Freidin, C., Motzafi-Haller, W. Cementless building units based on oil shale and coal fly ash binder. Constr. Build. Mater., 1999, 13(7), 363–369.
http://dx.doi.org/10.1016/S0950-0618(99)00041-0

36. Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., Shah, S. P. Effects of colloidal nanoSiO2 on fly ash hydration. Cement Concrete Comp., 2012, 34(10), 1095–1103.
http://dx.doi.org/10.1016/j.cemconcomp.2012.06.013

37. European Standard EN 12457-2:2002. Characterisation of waste – Leaching – Compliance Test for Leaching of Granular Waste Materials and Sludges – Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size below 4 mm (without or with size reduction). European Committee for Standardization (CEN), Brussels, Belgium, 2002.

38. Raado, L.-M., Kuusik, R., Hain, T., Uibu, M., Somelar, P. Oil shale ash based stone formation – hydration, hardening dynamics and phase transformations. Oil Shale, 2014, 31, 91–101.
http://dx.doi.org/10.3176/oil.2014.1.09

39. Matura, M., Ettler, V., Ježek, J., Mihaljevič, M., Šebek, O., Sýkora, V. Associa­tion of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills. J. Hazard. Mater., 2010, 183(1–3), 541–548.
http://dx.doi.org/10.1016/j.jhazmat.2010.07.058

40. Praharaj, T, Swain, S. P., Powell, M. A., Hart, B. R., Tripathy, S. Delineation of groundwater contamination around an ash pond: geochemical and GIS approach. Environ. Int., 2002, 27, 631–638.
http://dx.doi.org/10.1016/S0160-4120(01)00121-0

41. Anthony, E. J., Bulewicz, E. M., Dudek, K., Kozak, A. The long term behaviour of CFBC ash-water systems. Waste Manage., 2002, 22(1), 99–111.
http://dx.doi.org/10.1016/S0956-053X(01)00059-9

42. Moreno, N., Querol, X., Andrés, J., M., Stanton, K., Towler, M., Nugteren, H., Janssen-Jurkovicová, M., Jones, R. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 2005, 84(11), 1351–1363.
http://dx.doi.org/10.1016/j.fuel.2004.06.038

43. Baba, A., Kaya, A. Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. J. Environ. Manage., 2004, 73(3), 199–207.
http://dx.doi.org/10.1016/j.jenvman.2004.06.005

44. Anthony, E. J., Jia, L., Wu, Y. CFBC ash hydration studies. Fuel, 2005, 84(11), 1393–1397.
http://dx.doi.org/10.1016/j.fuel.2004.10.017

45. Hassett, D. J., Pflughoeft-Hassett, D. F., Heebink, L. V. Leaching of CCBs: observations from over 25 years of research. Fuel, 2005, 84(11), 1378–1383.
http://dx.doi.org/10.1016/j.fuel.2004.10.016

46. Chrysochoou, M., Dermatas, D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. J. Hazard. Mater., 2006, 136(1), 20–33.
http://dx.doi.org/10.1016/j.jhazmat.2005.11.008

47. Conn, R. E., Sellakumar, K., Bland, A. E. Utilization of CFB Fly Ash for Construction Applications. In: Proceedings of the 15th International Con­ference on Fluidized Bed Combustion, Paper No FBC99-0144, ASME, New York, 1999, 1–18.

Back to Issue