ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
CALCULATION OF THE AMOUNT OF ESTONIAN OIL SHALE PRODUCTS FROM COMBUSTION IN REGULAR AND OXY-FUEL MODE IN A CFB BOILER; pp. 211–224
PDF | doi: 10.3176/oil.2014.3.02

Authors
ALAR KONIST, LAURI LOO, ALEKSANDR VALTSEV, BIRGIT MAATEN, ANDRES SIIRDE, Dmitri Neshumayev, TÕNU PIHU
Abstract

Oxy-fuel combustion is considered as one of the promising carbon capture and storage (CCS) technologies for coal-fired boilers. In oxy-fuel combustion, the combustion gases are oxygen and the recirculating flue gas, and the main components of the combustion gas are O2, CO2 and H2O [1].
   The paper presents the results of the calculation of the flue gas amount during combustion of oil shale using oxy-fuel technology in a circulated fluidized bed (CFB) mode. The calculations were performed for different oil shale heating values and different recycled flue gas (RFG) ratios. Oxy-fuel combustion with flue gas recycling was found to enable the decrease of the extent of carbonate minerals decomposition (ECD), thereby increasing the amount of heat released per 1 kg of fuel. To minimize ECD, the recycled flue gas ratio should be maintained at a level higher than 0.7. This condition allows an increase of the partial pressure of CO2 over the equilibrium state line of calcite decomposition reaction at the bed temperature. The decrease of ECD was observed up to kCO2-min  = 0.28 The decrease of kCO2 leads to an additional increase in the amount of heat released during oil shale combustion per 1 kg and, depending on the mean lower heating value (LHV), the heat can be increased up to 0.34 MJ/kg.
   A comparison with the bituminous and anthracite coals revealed that the specific emission of CO2 per input fuel energy for oil shale is expected to be even smaller compared with those of the considered coals.

References

  1. Fujimori, T., Yamada, T. Realization of oxyfuel combustion for near zero emission power generation. P. Combust. Inst., 2013, 34(2), 2111–2130.
http://dx.doi.org/10.1016/j.proci.2012.10.004

  2. IEA. World Energy Outlook 2012. International Energy Agency, Paris, France, 2012.

  3. IEA. Tracking Clean Energy Progress 2013. International Energy Agency, 2013.

  4. Wall, T. Fundamentals of oxy-fuel combustion. In: Proceedings of the Inaugural Workshop of the Oxy-fuel Combustion Network, November 29–30, 2005 Cottbus, Germany.

  5. Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R., Zeenathal, F., Moghtaderi, B., Buhre, B., Sheng, C., Gupta, R., Yamada, T., Makino, K., Yu, J. An overview on oxyfuel coal combustion – State of the art research and technology development. Chem. Eng. Res. Des., 2009, 87(8), 1003–1016.
http://dx.doi.org/10.1016/j.cherd.2009.02.005

  6. Suraniti, S. L., Nsakala, N. Y., Darling, S. L. Alstom oxyfuel CFB boilers: A promising option for CO2 capture. Energy Procedia, 2009, 1(1), 543–548.
http://dx.doi.org/10.1016/j.egypro.2009.01.072

  7. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R. D. Advances in CO2 capture technology – The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Con., 2008, 2(1), 9–20.

  8. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.-M., Bouallou, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng., 2010, 30(1), 53–62.
http://dx.doi.org/10.1016/j.applthermaleng.2009.05.005

  9. Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., Jensen, A. D. Oxy-fuel combustion of solid fuels. Prog. Energ. Combust., 2010, 36(5), 581–625.
http://dx.doi.org/10.1016/j.pecs.2010.02.001

10. Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., Maier, J. Oxy-fuel coal combustion – A review of the current state-of-the-art. IntJ. Greenh. Gas Con., 2011, 5(Supplement 1), S16–S35.
http://dx.doi.org/10.1016/j.ijggc.2011.05.020

11. Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P., Wall, T. F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energ. Combust., 2005, 31(4), 283–307.
http://dx.doi.org/10.1016/j.pecs.2005.07.001

12. Okawa, M., Kimura, N., Kiga, T., Takano, S., Arai, K., Kato, M. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2. Energ. Convers. Manage., 1997, 38(S), S123–S127.

13. Horn, F. L., Steinberg, M. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel, 1982, 61(5), 415–422.
http://dx.doi.org/10.1016/0016-2361(82)90064-3

14. Herzog, H., Golomb, D., Zemba, S. Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean. Environ. Prog., 1991, 10(1), 64–74.
http://dx.doi.org/10.1002/ep.670100118

15. Abraham, B. M., Asbury, J. G., Lynch, E. P., Teotia, A. P. S. Coal-oxygen process provides CO2 for enhanced recovery. Oil Gas J., 1982, 80(11), 68–70.

16. Nakayama, S., Noguchi, Y. Pulverized coal combustion in O2/CO2 mixtures on a power plant for CO2 recovery. Energ. Convers. Manage., 1992, 33(5–8), 379–386.
http://dx.doi.org/10.1016/0196-8904(92)90034-T

17. Simmons, M., Miracca, I., Gerdes, K. Oxyfuel technologies for CO2 capture: a techno-economic overview. In: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, 5–9 September 2004, Vancouver, Canada.

18. Châtel-Pélage, F., Varagani, R., Pranda, P., Perrin, N., Farzan, H., Vecci, S. J., Lu, Y., Chen, S., Rostam-Abadi, M., Bose, A. C. Applications of oxygen for NOx control and CO2 capture in coal-fired power plants. Therm. Sci., 2006, 10(3), 119–142.
http://dx.doi.org/10.2298/TSCI0603119C

19. Tan, Y., Croiset, E., Douglas, M. A., Thambimuthu, K. V. Combustion charac­teristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 2006, 85(4), 507–512.
http://dx.doi.org/10.1016/j.fuel.2005.08.010

20. Romeo, L. M., Diez, L. I., Guedea, I., Bolea, I., Lupiáñez, C., González, A., Pallarés, J., Teruel, E. Design and operation assessment of an oxyfuel fluidized bed combustor. Exp. Therm. Fluid Sci., 2011, 35(3), 477–484.
http://dx.doi.org/10.1016/j.expthermflusci.2010.11.011

21. Czakiert, T., Bis, Z., Muskala, W., Nowak, W. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed. Fuel Process. Technol., 2006, 87(6), 531–538.
http://dx.doi.org/10.1016/j.fuproc.2005.12.003

22. Scala, F., Salatino, P. Flue gas desulfurization under simulated oxyfiring fluidized bed combustion conditions: The influence of limestone attrition and fragmentation. Chem. Eng. Sci., 2010, 65(1), 556–561.
http://dx.doi.org/10.1016/j.ces.2009.03.020

23. Jia, L., Tan, Y., Wang, C., Anthony, E. J. Experimental study of oxy-fuel com­bus­tion and sulfur capture in a mini-CFBC. Energ. Fuel., 2007, 21(6), 3160–3164.
http://dx.doi.org/10.1021/ef7002359

24. Jia, L., Tan, Y., Anthony, E. J. Emissions of SO2 and NOx during oxy-fuel CFB combustion tests in a mini-circulating fluidized bed combustion reactor. Energ. Fuel., 2010, 24(2), 910–915.
http://dx.doi.org/10.1021/ef901076g

25. Stewart, M. C., Symonds, R. T., Manovic, V., Macchi, A., Anthony, E. J. Effects of steam on the sulfation of limestone and NOx formation in an air- and oxy-fired pilot-scale circulating fluidized bed combustor. Fuel, 2012, 92(1), 107–115.
http://dx.doi.org/10.1016/j.fuel.2011.06.054

26. Rahiala, S., Myöhänen, K., Hyppänen, T. Modeling the behavior of limestone particles in oxy-fuel CFB processes. Fuel, 2014, 127, 141–150.
http://dx.doi.org/10.1016/j.fuel.2013.08.019

27. Duan, L., Sun, H., Zhao, C., Zhou, W., Chen, X. Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle. Fuel, 2014, 127, 47–51.
http://dx.doi.org/10.1016/j.fuel.2013.06.016

28. Varol, M., Atimtay, A. T., Olgun, H., Atakül, H. Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor: Part 1. Effect of excess air ratio. Fuel, 2014, 117, Part A, 792–800.

29. Al-Makhadmeh, L., Maier, J., Al-Harahsheh, M., Scheffknecht, G. Oxy-fuel technology: An experimental investigation into oil shale combustion under oxy-fuel conditions. Fuel, 2013, 103, 421–429.
http://dx.doi.org/10.1016/j.fuel.2012.05.054

30. Konist, A., Pihu, T., Neshumayev, D., Külaots, I. Low grade fuel - oil shale and biomass co-combustion in CFB boiler. Oil Shale, 2013, 30(2S), 294–304.
http://dx.doi.org/10.3176/oil.2013.2S.09

31. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 2013, 30(1), 6–18.
http://dx.doi.org/10.3176/oil.2013.1.02

32. Plamus, K., Ots, A., Pihu, T., Neshumayev, D. Firing Estonian oil shale in CFB boilers – ash balance and behaviour of carbonate minerals. Oil Shale, 2011, 28(1), 58–67.
http://dx.doi.org/10.3176/oil.2011.1.07

33. Arro, H., Prikk, A., Pihu, T. Calculation of qualitative and quantitative com­position of Estonian oil shale and its combustion products. Part 1. Calculation on the basis of heating value. Fuel, 2003, 82(18), 2179–2195.
http://dx.doi.org/10.1016/S0016-2361(03)00125-X

34. Arro, H., Prikk, A., Pihu, T. Calculation of qualitative and quantitative com­position of Estonian oil shale and its combustion products. Part 2. Calculation on the basis of technical analysis data. Fuel, 2003, 82(18), 2197–2204.
http://dx.doi.org/10.1016/S0016-2361(03)00125-X

35. Ots, A. Oil Shale Fuel Combustion. Tallinn University of Technology, Tallinn, 2006.

36. Külaots, I., Ots, A., Yrjas, P., Hupa, M., Backman, P. Sulphation of Estonian and Israeli oil shale ashes under atmospheric and pressurized combustion conditions. Oil Shale, 1997, 14(3S), 265–283.

37. Czakiert, T., Sztekler, K., Karski, S., Markiewicz, D., Nowak, W. Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig. Fuel Process. Technol., 2010, 91(11), 1617–1623.
http://dx.doi.org/10.1016/j.fuproc.2010.06.010

38. Duan, L., Zhao, C., Zhou, W., Qu, C., Chen, X. O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed. Int. J. Greenh. Gas Con., 2011, 5(4), 770–776.
http://dx.doi.org/10.1016/j.ijggc.2011.01.007

Back to Issue