ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
PYROLYSIS KINETICS OF NORTH-KOREAN OIL SHALE; pp. 250–265
PDF | doi: 10.3176/oil.2014.3.05

Authors
WEI WANG, LIN-YUE LI, YUE MA, CHANG-TAO YUE, JI-LAI HE
Abstract

In this paper, the kinetics of pyrolysis of North-Korean oil shale was investigated. Fischer Assay analysis showed that the oil yield of oil shale sample was 12.14 wt%. Thermogravimetry was applied to the analysis of pyrolysis of oil shale sample at the heating rates of 5, 10, 15, 20 and 25 °C/min. The kinetic parameters (apparent activation energy E and frequency factor A) were determined by the Friedman procedure, maximum pyrolysis rate method and parallel reactions model, respectively. Based on the Friedman procedure the values of apparent activation energy E were found to range from 209 kJ/mol to 359 kJ/mol and frequency factor A from 6.32 × 1012 to 1.99 × 1020·min–1. It was shown by the maximum pyrolysis rate method that E and A were respectively 191.52 kJ/mol and 1.51 × 1013·min–1. As determined by the parallel reactions model, the values of apparent activation energy were mainly between 130 kJ/mol and 240 kJ/mol. The plot of ln A vs E for oil shale pyrolysis was a straight line.

References

 1. Sert, M., Ballice, L., Yüksel, M., Sağlam, M. The effects of acid treatment on the pyrolysis of Göynük oil shale (Turkey) by thermogravimetric analysis. Oil Shale, 2012, 29(1), 51–62.
http://dx.doi.org/10.3176/oil.2012.1.05

  2. Qian, J. L., Wang, J. Q., Li, S. Y. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.

  3. Yanik, J., Seçim, P., Karakaya, S., Tiikma, L., Luik, H., Krasulina, J., Raik, P., Palu, V. Low-temperature pyrolysis and co-pyrolysis of Göynük oil shale and terebinth berries (Turkey) in an autoclave. Oil Shale, 2011, 28(4), 469–486.
http://dx.doi.org/10.3176/oil.2011.4.02

  4. Kök, M. V. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion-pyrolysis behavior. Energ. Source. Part A, 2010, 32(4), 323–335.
http://dx.doi.org/10.1080/15567030801909797

  5. Williams, P. T, Ahmad, N. Investigation of oil-shale pyrolysis processing condi­tions using thermogravimetric analysis. App. Energ., 2000, 66(2), 113–133.
http://dx.doi.org/10.1016/S0306-2619(99)00038-0

  6. Li, S. Y., Yue, C. T. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.
http://dx.doi.org/10.1016/S0016-2361(02)00268-5

  7. Dogan, O. M, Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales. Fuel, 1996, 75(12), 1424–1428.
http://dx.doi.org/10.1016/0016-2361(96)00089-0

  8. Torrente, M. C., Galan, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 2001, 80(3), 327–334.
http://dx.doi.org/10.1016/S0016-2361(00)00101-0

  9. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333–341.
http://dx.doi.org/10.1016/j.fuel.2011.09.018

10. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis Pakistani oil shales. Fuel, 1999, 78(6), 653–662.
http://dx.doi.org/10.1016/S0016-2361(98)00190-2

11. Aboulkas, A, El Harfi, K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale, 2008, 25(4), 426–443.
http://dx.doi.org/10.3176/oil.2008.4.04

12. Abu-Qudais, M., Jaber, J. O., Sawalha, S. Kinetics of pyrolysis of Attarat oil shale by thermogravimetry. Oil Shale, 2005, 22(1), 51–63.

13. Luo, B. J., Wang, C. J., Dong, C. M., Lin, J. H. Organic geochemical charac­teristics of oils from Anzhou basin, DPR Korea. Acta Petrolei Sinica, 1995, 16(4), 40–47 (in Chinese).

14. Yağmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale. J. Therm. Anal. Calorim., 2006, 86(2), 479–482.
http://dx.doi.org/10.1007/s10973-005-7312-5

15. Meng M., Hu, H. Q., Zhang, Q. M., Li, X., Wu, B. Pyrolysis behaviors of Tumuji oil sand by thermogravimetry (TG) and in a fixed bed reactor. Energ. Fuel., 2007, 21(4), 2245–2249.
http://dx.doi.org/10.1021/ef070048z

16. Wang, Z. J., Deng, S. H., Gu, Q., Zhang, Y. M., Cui, X. J., Wang, H. Y. Pyrolysis kinetic study of Huadian oil shale, spent oil shale and their mixtures by thermo-gravimetric analysis. Fuel Process. Technol., 2013, 110, 103–108.
http://dx.doi.org/10.1016/j.fuproc.2012.12.001

17. Olivella, M. A., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals. Oil Shale, 2008, 25(2), 227–245.
http://dx.doi.org/10.3176/oil.2008.2.05

18. Olivella, M. A., De Las Heras, F. X. C. Nonisothermal thermogravimetry of Spanish fossil fuels. Oil Shale, 2006, 23(4), 340–355.

19. Narayan, R., Antal, M. J. Thermal lag, fusion and the compensation effect during biomass pyrolysis. Ind. Eng. Chem. Res., 1996, 35(5), 1711–1721.
http://dx.doi.org/10.1021/ie950368i

20. Yağmur, S., Durusoy, T. Oil shale combustion kinetics from single thermo­gravi­metric curve. Energ. Source. Part A, 2009, 31(14), 1227–1235.
http://dx.doi.org/10.1080/15567030801952292

21. Li, S. Y., Yue, C. T. Study of different kinetic models for oil shale pyrolysis. Fuel Process. Technol., 2004, 85(1), 51–61.
http://dx.doi.org/10.1016/S0378-3820(03)00097-3

22. Liu, N. A., Wang, B. H., Fan, W. C. Kinetic compensation effect in biomass thermal decomposition. Fire Safety Science, 2002, 11(2), 63–70 (in Chinese).

23. Kok, M. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion-pyrolysis behavior. Energ. Source. Part A, 2009. 32(4), 323–335.
http://dx.doi.org/10.1080/15567030801909797

Back to Issue