ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
BIOMASS ALLOCATION, LEAF AND FINE ROOT MORPHOLOGICAL ADAPTATIONS IN YOUNG BLACK ALDER (Alnus glutinosa (L.) Gaertn.), SILVER BIRCH (Betula pendula Roth.) AND SCOTS PINE (Pinus sylvestris L.)...; pp. 289–303
PDF | doi: 10.3176/oil.2014.3.08

Authors
Tatjana Kuznetsova, ALJONA LUKJANOVA, KATRI OTS, KATRIN ROSENVALD, Ivika Ostonen, Krista Lõhmus
Abstract

The biomass allocation, as well as leaf and short root morpho­logical parameters in young (1–7-year-old) black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations on the oil shale post-mining area were investigated with the aim to analyze morphological adaptations of studied parameters in relation to tree species and stand age. The adaptive strategies of tree species in young plantations on the reclaimed stony and alkaline mining area were different. Scots pine allocated more biomass into leaves and fine roots while black alder and silver birch into stems and coarse roots. The black alder leaves were heavier and with larger area, but thinner than those of silver birch. Different strategies of short root morphological adaptations were observed in coniferous and deciduous tree species on the oil shale post-mining area. Deciduous species were found to have higher short root specific root area and specific root length values, and lower short root tissue density and dia­meter values compared to coniferous species such as Scots pine. An extensive building of the fine root system was inherent to Scots pine, whereas deciduous trees improved mineral nutrition more by morphological adapta­tions of fine roots.

References

  1. Chambers, J. C., Brown, R. W., Williams, B. D. An evaluation of reclamation success on Idaho’s phosphate mines. Restor. Ecol., 1994, 2(1), 4–16.
http://dx.doi.org/10.1111/j.1526-100X.1994.tb00037.x

  2. Kaar, E., Tomberg, E. Recultivation of the quarry spoil. In: Proceedings of the Conference of Estonian Miners 2006 by Estonian Mining Society: 90 Years of Oil Shale Mining in Estonia (Valgma, I., ed.). Tallinn University of Technol­ogy, Tallinn, 2006, 78–83 (in Estonian).

  3. Kaar, E. Of some results of the reclamation of opencast oil shale mining pits. In: Proceedings of the Estonian Academic Forest Society 18. Forest Research Institute of EAU, Tartu, 2002, 123–131 (in Estonian, Summary in English).

  4. Lõhmus, K., Truu, J., Truu, M., Kaar, E., Ostonen, I., Alama, S., Kuznet­sova, T., Rosenvald, K., Vares, A., Uri, V., Mander, Ü. Black alder as a perspective deciduous species for reclaiming of oil shale mining areas. In: Brownfields III. Prevention, Assessment, Rehabilitation and Development of Brownfield Sites (Brebba, C. A., Mander, Ü., eds.), Wessex Institute of Techonology Press, Southampton, Boston, 2006, 87–97.
http://dx.doi.org/10.2495/BF060091

  5. Parrotta, J. A., Turnbull, J. W., Jones, N. Catalyzing native forest regeneration on degraded tropical lands. Forest Ecol. Manag., 1997, 99(1–2), 1–7.
http://dx.doi.org/10.1016/S0378-1127(97)00190-4

  6. Pietrzykowski, M., Krzaklewski, W. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Arch. Agron. Soil Sci., 2007, 53(5), 473–483.
http://dx.doi.org/10.1080/03650340701362516

  7. Singh, A. N., Raghubanshi, A. S., Singh, J. S. Plantations as a tool for mine spoil restoration. Curr. Sci. India, 2002, 82(12), 1436–1441.

  8. Kaar, E., Lainoja, L., Luik, H., Raid, L., Vaus, M. Reclamation of the Oil Shale Mines. Valgus, Tallinn, 1971 (in Estonian).

  9. Kuznetsova, T., Pärn, H. Some results of the afforestation of closed oil shale opencasts with exotic conifers. Oil Shale, 2004, 21(4), 321–331.

10. Lõhmus, K., Kull, A., Truu, J., Truu, M., Kaar, E., Ostonen, I., Meel, S., Kuz­netsova, T., Rosenvald, K., Uri, V., Kurvits, V., Mander, Ü. The reclamation of the North Estonian oil shale mining area. In: Multifunctional Land Use. Mee­ting Future Demands for Landscape Goods and Services (Mander, Ü., Wigger­ing, H., Helming, K., eds.). Springer, Berlin, 2007, 387–401.

11. Korjus, H., Sims, A., Kangur, A., Kaar, E., Kiviste, A. Forest growth dynamics on abandoned oil shale quarries on the basis of permanent plot data. Miškininkystė, 2007, 61(1), 24–29.

12. Vares, A., Lõhmus, K., Truu, M., Truu, J., Tullus, H., Kanal, A. Productivity of black alder (Alnus glutinosa (L.) Gaertn.) plantations on reclaimed oil shale mining detritus and mineral soils in relation to rhizosphere conditions. Oil Shale, 2004, 21(1), 43–58.

13. Giardina, C. P., Huffman, S., Binkley, D., Caldwell, B. A. Alders increase soil phosphorus availability in a Douglas-fir plantation. Can. J. Forest Res., 1995, 25(10), 1652–1657.
http://dx.doi.org/10.1139/x95-179

14. Uri, V., Tullus, H., Lõhmus, K. Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forest Ecol. Manag., 2002, 161(1–3), 169–179.
http://dx.doi.org/10.1016/S0378-1127(01)00478-9

15. Hodge, A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol., 2004, 162(1), 9–24.
http://dx.doi.org/10.1111/j.1469-8137.2004.01015.x

16. Lõhmus, K., Oja, T., Lasn, R. Specific root area: A soil characteristic. Plant Soil, 1989, 119(2), 245–249.
http://dx.doi.org/10.1007/BF02370415

17. Ostonen, I., Lõhmus, K., Lasn, R. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant Soil, 1999, 208(2), 283–292.
http://dx.doi.org/10.1023/A:1004552907597

18. Fitter, A. H. Characteristics and functions of root systems. In: Plant Roots. The Hidden Half (Waisel, Y., Eshel, A., Kafkafi, U., eds.). Marcel Dekker, Monticello, NY, 1996, 363–381.

19. Ostonen, I., Lõhmus, K., Helmisaari, H-S., Truu, J., Meel, S. Fine root morpho­logical adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol., 2007, 27(11), 1627–1634.
http://dx.doi.org/10.1093/treephys/27.11.1627

20. Lambers, H., Chapin III, F. S., Pons, T. L. Plant Physiological Ecology. Springer, New York, 2006.

21. Liu, G., Freschet, G. T., Pan, X., Cornelissen, J. H., Li, Y., Dong, M. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol., 2010, 188(2), 543–553.
http://dx.doi.org/10.1111/j.1469-8137.2010.03388.x

22. Hüttl, R. F., Weber, E. Forest ecosystem development in post-mining land­scapes: a case study of the Lusatian lignite district. Naturwissenschaften, 2001, 88(8), 322–329.
http://dx.doi.org/10.1007/s001140100241

23. Kuznetsova, T., Lukjanova, A., Mandre, M., Lõhmus, K. Aboveground bio­mass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. Forest Ecol. Manag., 2011, 262(2), 56–64.
http://dx.doi.org/10.1016/j.foreco.2010.09.030

24. Kuznetsova, T., Rosenvald, K., Ostonen, I., Helmisaari, H.-S., Mandre, M., Lõhmus, K. Survival of black alder (Alnus glutinosa L.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings in a reclaimed oil shale mining area. Ecol. Eng., 2010, 36(4), 495–502.
http://dx.doi.org/10.1016/j.ecoleng.2009.11.019

25. Bormann, B. T., Gordon, J. C. Stand density effects in young red alder planta­tions: productivity, photosynthate partitioning, and nitrogen fixation. Ecology, 1984, 65(2), 394–402.
http://dx.doi.org/10.2307/1941402

26. Lõhmus, K., Mander, Ü., Tullus, H., Keedus, K. Productivity, buffering capacity and resources of grey alder forests in Estonia. In: Short Rotation Willow Coppice for Renewable Energy and Improved Environment (Perttu, K., Koppel, A., eds.). Swedish University of Agricultural Sciences, Uppsala, 1996, 95–105.

27. Uri, V., Lõhmus, K., Ostonen, I., Tullus, H., Lastik, R., Vildo, M. Biomass pro­duction, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur. J. Forest Res., 2007, 126(4), 495–506.
http://dx.doi.org/10.1007/s10342-007-0171-9

28. Vogt, K. A., Persson, H. Measuring growth and development of roots. In: Techniques and Approaches in Forest Tree Ecophysiology (Lassoie, J. P., Hinckley, T. M., eds.). CRC Press, Boca Raton, 1991, 477–501.

29. Helmisaari, H.-S., Derome, J., Nöjd, P., Kukkola, M. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol., 2007, 27(10), 1493–1504.
http://dx.doi.org/10.1093/treephys/27.10.1493

30. van der Werf, A., Visser, A. J., Schieving, F., Lambers, H. Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- and slow-growing species. Funct. Ecol., 1993, 7(1), 63–74.
http://dx.doi.org/10.2307/2389868

31. Coutts, M. P. Root architecture and tree stability. Plant Soil, 1983, 71(1–3), 171–188.
http://dx.doi.org/10.1007/BF02182653

32. Helmisaari, H.-S., Makkonen, K., Kellomäki, S., Valtonen, E., Mälkönen, E. Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecol. Manag., 2002, 165(1–3), 317–326.
http://dx.doi.org/10.1016/S0378-1127(01)00648-X

33. Mäkelä, A., Vanninen, P. Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine. Can. J. Forest Res., 1998, 28(2), 216–227.
http://dx.doi.org/10.1139/x97-199

34. Niinemets, Ü. The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. J. Ecol., 2006, 94(2), 464–470.
http://dx.doi.org/10.1111/j.1365-2745.2006.01093.x

35. Portsmuth, A., Niinemets, Ü., Truus, L., Pensa, M. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Can. J. Forest Res., 2005, 35(10), 2346–2359.
http://dx.doi.org/10.1139/x05-155

36. Vanninen, P., Ylitalo, H., Sievänen, R., Mäkelä, A. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees-Struct. Funct., 1996, 10(4), 231–238.

37. Wright, I. J., Westoby, M., Reich, P. B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecology, 2002, 90(3), 534–543.
http://dx.doi.org/10.1046/j.1365-2745.2002.00689.x

38. Rosenvald, K. Factors Affecting Ectomycorrhizal Roots and Rhizosphere in Silver Birch Stands. Dissertation, University of Tartu, 2011.

39. Johansson, T. Biomass equations for determining fractions of common and grey alders growing on abandoned farmland and some practical implications. Biomass Bioenerg., 2000, 18(2), 147–159.
http://dx.doi.org/10.1016/S0961-9534(99)00078-1

40. Uri, V., Lõhmus, K., Kiviste, A., Aosaar, J. The dynamics of biomass produc­tion in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry, 2009, 82(1), 61–74.
http://dx.doi.org/10.1093/forestry/cpn040

41. Kull, O., Niinemets, Ü. Variations in leaf morphometry and nitrogen con­centra­tion in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. Tree Physiol., 1993, 12(3), 311–318.
http://dx.doi.org/10.1093/treephys/12.3.311

42. Ostonen, I., Lõhmus, K., Alama, S., Truu, J., Kaar, E., Vares, A., Uri, V., Kur­vits, V. Morphological adaptations of fine roots in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula roth.) and black alder (Alnus glutinosa (L.) Gaertn.) stands in recultivated areas of oil shale mining and semicoke hills. Oil Shale, 2006, 23(2), 187–202.

43. Comas, L. H., Bouma, T. J., Eissenstat, D. M. Linking root traits to potential growth rate in six temperate tree species. Oecologia, 2002, 132(1), 34–43.
http://dx.doi.org/10.1007/s00442-002-0922-8

44. Curt, T., Prévosto, B. Root biomass and rooting profile of naturally regenerated beech in mid-elevation Scots pine woodlands. Plant Ecol., 2003, 167(2), 269–282.
http://dx.doi.org/10.1023/A:1023904912712

45. Sellin, A., Kupper, P. Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch. Oecologia, 2005, 142(3), 388–397.
http://dx.doi.org/10.1007/s00442-004-1748-3

46. Rosenvald, K., Kuznetsova, T., Ostonen, I., Truu, M., Truu, J., Uri, V., Lõh­mus, K. Rhizosphere effect and fine-root morphological adaptations in a chrono­sequence of silver birch stands on reclaimed oil shale post-mining areas. Ecol. Eng., 2011, 37(7), 1027–1034.
http://dx.doi.org/10.1016/j.ecoleng.2010.05.011

47. Børja, I., De Wit, H. A., Steffenrem, A., Majdi, H. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiol., 2008, 28(5), 773–784.
http://dx.doi.org/10.1093/treephys/28.5.773

48. Kalliokoski, T., Pennanen, T., Nygren, P., Sievänen, R., Helmisaari, H.-S. Below­ground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil, 2010, 330(1–2), 73–89.
http://dx.doi.org/10.1007/s11104-009-0177-9

49. Rosenvald, K., Ostonen, I., Truu, M., Truu, J., Uri, V., Vares, A., Lõhmus, K. Fine-root rhizosphere and morphological adaptations to site conditions in inter­action with tree mineral nutrition in young silver birch (Betula pendula Roth.) stands. Eur. J. Forest Res., 2011, 130(6), 1055–1066.
http://dx.doi.org/10.1007/s10342-011-0492-6

50. Richardson, A. E., Barea, J.-M., McNeill, A. M., Prigent-Combaret, C. Acquisi­tion of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil, 2009, 321(1–2), 305–339.
http://dx.doi.org/10.1007/s11104-009-9895-2

Back to Issue