Pyrolysis of Bulgarian oil shale was studied by using a diamond anvil cell, which allows one to observe directly the conversion of organic matter to mobile oily liquid, solid residue and gas. This method gives the possibility to detect very precisely the temperatures of kerogen transformation during pyrolysis. It was observed that most of the gaseous products were generated later than oily liquids, most probably by cracking processes of liquid products. Due to the strong connection between mineral and organic matter, the generation of liquids and gases from oil shale occurred at higher temperature. Light intensity measurements were used to follow quantitatively the rate of reaction.
1. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer Verlag, Berlin, 1984.
http://dx.doi.org/10.1007/978-3-642-87813-8
2. Cook, A. C., Sherwood, N. R. Classification of oil shales, coals and other organic-rich rocks. Org. Geochem., 1991, 17(2), 211–222.
http://dx.doi.org/10.1016/0146-6380(91)90079-Y
3. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.
4. Espitalié, J., Laport, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., Boutefeu, A. Méthode rapide de caractérisation des roches mères, et de leur potentiel pétrolier et de leur degré d'évolution. Revue de l'lnstitut Francais du Pétrole, 1977, 32, 23–42.
5. Peters, K. E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. Am. Assoc. Petr. Geol. B., 1986, 70, 318–329.
6. Huizinga, B. J., Aizenshtat, Z. A., Peters, K. E. Programmed pyrolysis-gas chromatography of artificially matured Green River kerogen. Energ. Fuel., 1988, 2(1),74–81.
http://dx.doi.org/10.1021/ef00007a011
7. Lewan, M. D. Evaluation of petroleum generation by hydrous pyrolysis experimentation. Phil. Trans. R. Soc. Lond. A, 1985, 315(1531), 124–134.
8. Winters, J. C., Williams, J. A., Lewan, M. D. A laboratory study of petroleum generation by hydrous pyrolysis. In: Advances in Organic Geochemistry (Bjoroy, M. et al., eds.). John Wiley, London, 1981, 524–533.
9. Stout, S. A., Lin, R. Lasers in organic petrology and organic geochemistry – l. Laser-induced fluorescence, thermal extraction, and pyrolysis. Org. Geochem.,1992, 18(3), 229–239.
http://dx.doi.org/10.1016/0146-6380(92)90064-5
10. Thomas, C. G., Gosnell, M. E., Gawronski, E., Phont-Anant, D., Shibaoka, M. The behaviour of inertinite macerals under pulverised fuel (pf) combustion conditions. Org. Geochem., 1993, 20(6), 779–788.
http://dx.doi.org/10.1016/0146-6380(93)90062-G
11. Davis, A., Hoover, D. S., Wakeley, L. D., Mitchell, G. D. The microscopy of mesophase formation and anisotropic cokes produced from solvent-refined coals. J. Microsc.,1983, 132(3), 315–331.
http://dx.doi.org/10.1111/j.1365-2818.1983.tb04597.x
12. Spiro, C. L., Mckee, D. W., Kosky, P. G., Lamby, E. J. Observation of alkali catalyst particles during gasification of carbonaceous materials in CO2 and steam. Fuel, 1984, 63(5), 686–691.
http://dx.doi.org/10.1016/0016-2361(84)90167-4
13. Glass, M. W., Zygourakis, K. Computerized microreactor and video microscopy system for coal pyrolysis study. Rev. Sci. Instrum., 1988, 59(4), 580–587.
http://dx.doi.org/10.1063/1.1140261
14. Granda, M., Bermejo, J., Figueiras, A., Menendez, R. Influence of chemical composition of pitches on mesophase formation and coke structure. In: Proc. 7th Int. Conf. Coal Sci. (12-17 Sept., 1993, Banff, Alberta, Canada), Int. Energy Agency, 1993, l, 485–488.
15. Taulbee, D. N., Sparks, J., Robl, T. L. Application of hot stage micro-FT-IR to the study of organic functional group changes during pyrolysis. Fuel, 1994, 73(9), 1551–1556.
http://dx.doi.org/10.1016/0016-2361(94)90078-7
16. Radmacher, W., Mohrhauer, P. Entmineralisierung der Steinkohlen für analytische Ziele. Brennstoffchemie, 1956, 37, 353–358.
17. Huang, W.-L. A new pyrolysis technique using a dimaond anvil cell: in situ visualization of kerogen transformation. Org. Geochem., 1996, 24(1), 95–107.
http://dx.doi.org/10.1016/0146-6380(95)00081-X
18. Saxby, J. D. Isolation of kerogen in sediments by chemical method. Chem. Geol., 1970, 6, 173–184.
http://dx.doi.org/10.1016/0009-2541(70)90017-3
19. Versteegh, G. J. M., Blokker, P., Wood, G. D., Collinson, M. E., Sinninghe Damste, J. S., De Leeuw, J. W. An example of oxidative polymerization of unsaturated fatty acids as a preservation pathway for dinoflagellate organic matter. Org. Geochem., 2004, 35(10), 1129–1139.
http://dx.doi.org/10.1016/j.orggeochem.2004.06.012
20. Razvigorova, M., Budinova, T., Tsyntsarski, B., Petrova, B., Ekinci, E., Atakul, H., The composition of acids in bitumen and in products from saponification of kerogen: Investigation of their role as connecting kerogen and mineral matrix. Int. J. Coal Geol., 2008, 76(3), 243–249.
http://dx.doi.org/10.1016/j.coal.2008.07.011
21. Razvigorova, M., Budinova, T., Petrova, B., Tsyntsarski, B., Ekinci, E., Ferhat, M. F. Steam pyrolysis of Bulgarian oil shale. Oil Shale, 2008, 25(1), 27–36.
http://dx.doi.org/10.3176/oil.2008.1.04
22. Budinova, T., Razvigorova, M., Tsyntsarski, B., Petrova, B., Ekinci, E., Ferhat Yardim, M. Characterization of Bulgarian oil shale kerogen revealed by oxidative degradation. Chem. Erde - Geochem., 2009, 69(3), 235–245.
23. Huang, W.-L., Otten, G. A. Oil generation kinetics determined by DAC-FS/IR pyrolysis: technique development and preliminary results. Org. Geochem., 1998, 29(5–7), 1119–1137.http://dx.doi.org/10.1016/S0146-6380(98)00099-0