ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
COMBINED FLUIDIZED BED RETORTING AND CIRCULATING FLUIDIZED BED COMBUSTION SYSTEM OF OIL SHALE: 1. SYSTEM AND KEY ISSUES; pp. 42–53
PDF | doi: 10.3176/oil.2014.1.05

Authors
Xiangxin Han, QINGYOU LI, MENGTING NIU, YIRU HUANG, Xiumin Jiang
Abstract

The uncertainty about the current prices of petroleum, its growing worldwide consumption and limited availability have motivated many countries rich in oil shale resource to explore more efficient retorting technologies to widely produce and use shale oil as an alternative. On the basis of the retorting technology progress and the characteristics of oil shale, this paper recommends a combined system with a fluidized bed (FB) reactor for retorting oil shale and a circulating fluidized bed (CFB) boiler for burning semicoke and fuel gases, realizing the effective and clean use of oil shale. The FB retort and CFB boiler are arranged side-by-side, and hot circulating ash and semicoke will be conveyed from one side to the other. Both CFB circulating ash and fuel gases as fluidizing gases of the FB retort are proposed to be heat carriers together, transferring the combustion heat from the CFB to oil shale in the FB retort. Retorting temperature, heat capacity distribution of heat carriers and parameter optimization of the whole system are further discussed as key issues.

References

  1. Qian, J. L., Wang, J. Q., Li, S. Y. World’s oil shale available retorting technologies and the forecast of shale oil production. In: Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference, July 6–11, 2008, Vancouver, BC, Canada, 19–20.

  2. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.

  3. Uustalu, J. Utilization of semi-coke for energy production. In: Turning a Problem into a Resource (Rofer, C. K., Kaasik, T, eds.). Kluwer Academic Publishers, 2000, 223–228.

  4. Nicolini, J., Pereira, B. F., Pillon, C. N., Machado, V. G., Lopes, W. A., Andrade, J. B., Mangrich, A. S. Characterization of Brazilian oil shale byproducts planned for use as soil conditioners for food and agro-energy production. J. Anal. Appl. Pyrol., 2011, 90(2), 112–117.
http://dx.doi.org/10.1016/j.jaap.2010.11.001

  5. Qian, J. L., Wang, J. Q. World oil shale retorting technologies. International Conference on Oil Shale “Recent Trends In Oil Shale”, November 7–9, 2006, Amman, Jordan, Paper No. rtos-A118.

  6. Brandt, A. R. Converting oil shale to liquid fuels with the Alberta Taciuk Pro­cessor: Energy inputs and greenhouse gas emissions. Energ. Fuels, 2009, 23(12), 6253–6258.
http://dx.doi.org/10.1021/ef900678d

  7. Johnson, H. R., Crawford, P. M., Bunger, J. W. Strategic significance of America’s oil shale resource: Volume II – oil shale resources, technology and economics; Technical Report; Office of Naval Petroleum and Oil Shale Reserves: Washington, D.C., 2004.

  8. Schmidt, S. J. New directions for shale oil: path to a secure new oil supply well into this century [on the example of Australia]. Oil Shale, 2003, 20(3S), 333–346.

  9. Brandt, A. R. Converting oil shale to liquid fuels: Energy inputs and greenhouse gas emissions of the Shell in situ conversion process. Environ. Sci. Technol., 2008, 42(19), 7489–7495.
http://dx.doi.org/10.1021/es800531f

10. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.
http://dx.doi.org/10.1016/j.energy.2006.05.001

11. Ots, A., Poobus, A., Lausmaa, T. Technical and ecological aspects of shale oil and power cogeneration. Oil Shale, 2011, 28(1S), 101–112.
http://dx.doi.org/10.3176/oil.2011.1S.03

12. Jaber, J. O., Probert, S. D., Williams, P. T. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment. Appl. Energ., 1998, 59(2–3), 73–95.
http://dx.doi.org/10.1016/S0306-2619(98)00005-1

13. Dung, N. V. Yields and chemical characteristics of products from fluidized bed steam retorting of Condor and Stuart oil shales: effect of pyrolysis temperature. Fuel, 1990, 69(3), 368–376.
http://dx.doi.org/10.1016/0016-2361(90)90102-V

14. Dung, N. V. Pyrolysis behaviour of Australian oil shales in a fluidized bed reactor and in a material balance modified Fischer assay retort. Fuel, 1989, 68(12), 1570–1579.
http://dx.doi.org/10.1016/0016-2361(89)90296-2

15. Kuusik, R., Martins, A., Pihu, T., Pesur, A., Kaljuvee, T., Prikk, A., Trikkel, A., Arro. H Fluidized-bed combustion of oil shale retorting solid waste. Oil Shale, 2004, 21(3), 237–248.

16. Kuusik, R., Uibo, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–420.

17. Luan, J. D., Li, A. M., Su, T., Cui, X. B. Synthesis of nucleated glass-ceramics using oil shale fly ash. J. Hazard. Mater., 2010, 173(1–3), 427–432.
http://dx.doi.org/10.1016/j.jhazmat.2009.08.099

18. Smadi, M. M., Haddad, R. H. The use of oil shale ash in Portland cement concrete. Cement. Concrete Comp., 2003, 25(1), 43–50.
http://dx.doi.org/10.1016/S0958-9465(01)00054-3

19. Han, X. X., Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energ., 2009, 86(11), 2381–2385.
http://dx.doi.org/10.1016/j.apenergy.2009.03.014

20. Han, X. X., Jiang, X. M. Effects of retorting factors on combustion properties of shale char. 1. Pyrolysis characteristics. Energ. Fuels, 2009, 23(2), 677–682.
http://dx.doi.org/10.1021/ef800717g

21. Han, X. X., Jiang, X. M., Cui, Z. G., Yan, J. W., Liu, J. G. Effects of retorting factors on combustion properties of shale char: Part 4. Combustion charac­teristics. J. Therm. Anal. Calorim., 2011, 104(2), 771–779.
http://dx.doi.org/10.1007/s10973-010-1179-9

22. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9), 761–781.
http://dx.doi.org/10.1016/S0360-5442(99)00029-8

23. Solomon, P. R., Carangelo, R. M., Horn, E. The effects of pyrolysis conditions on Israeli oil shale properties. Fuel, 1986, 65(5), 650–662.
http://dx.doi.org/10.1016/0016-2361(86)90360-1

24. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.

25. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel, 1999, 78(6), 653–662.
http://dx.doi.org/10.1016/S0016-2361(98)00190-2

26. Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131–135.
http://dx.doi.org/10.1016/j.fuel.2011.11.029

27. Williams, P. T., Nazzal, J. M. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale. J. Anal. Appl. Pyrol., 1995, 35(2), 181–197.
http://dx.doi.org/10.1016/0165-2370(95)00908-9

28. Han, X. X., Cui, Z. G., Jiang, X. M., Liu, J. G. Regulating characteristics of loop seal in a 65 t/h oil shale-fired circulating fluidized bed boiler. Powder Technol., 2007, 178(2), 114–118.
http://dx.doi.org/10.1016/j.powtec.2007.04.015

29. Oja, V., Elenurm, A., Rohtla, I., Tali, E., Tearo, E., Yanchilin, A. Comparison of oil shales from different deposits: oil shale pyrolysis and co-pyrolysis with ash. Oil Shale, 2007, 24(2), 101–108.

30. Al-Qodah, Z. Adsorption of dyes using shale oil ash. Water Res., 2000, 34(17), 4295–4303.
http://dx.doi.org/10.1016/S0043-1354(00)00196-2

31. Niu, M. T., Wang, S., Han, X. X., Jiang, X.M. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Appl. Energ., 2013, 111, 234–239.
http://dx.doi.org/10.1016/j.apenergy.2013.04.089

32. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.
http://dx.doi.org/10.1016/j.energy.2012.03.066

Back to Issue