This paper describes vertical fine-scale geochemical heterogeneity of Estonian graptolite argillite (GA). GA samples from Pakri and Saka outcrop sections were collected at 20 cm intervals for chemical analysis of major and trace elements, including rare earth elements. The study indicates GA enrichment in U, V, Mo and Pb with respect to the average black shales and thus confirms the formerly reported data on GA geochemistry in general. However, the content of enriched elements and other trace metals was recorded to vary greatly across the sequences suggesting that trace metal distribution in GA is notably more heterogeneous than previously assumed. The origin of the observed complex distribution of trace elements was likely controlled by the interplay of different primary metal supply-sequestration factors/processes, such as synsedimentary redox-driven sequestration of redox sensitive elements, the provenance of clastic input, the post-sedimentary redistribution, etc.
1. Heinsalu, H., Viira, V. Pakerort Stage. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 52–58.
2. Petersell, V. Dictyonema argillite. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 313–326.
3. Andersson, A., Dahlman, B., Gee, D. G., Snäll, S. The Scandinavian Alum Shales. Sveriges Geologiska Undersökning (SGU), 1985, 56, 1–50.
4. Kaljo, D., Borovko, N., Heinsalu, H., Khazanovich, K., Mens, K., Popov, L., Sergeeva, S., Sobolevskaya, R., Viira, V. The Cambrian-Ordovician boundary in the Baltic-Ladoga clint area (North Estonia and Leningrad Region, USSR). Proc. Acad. Sci. Estonian SSR, Geology, 1986, 35(3), 97–108.
5. Heinsalu, H., Bednarczyk, W. Tremadoc of the East European Platform: Lithofacies and palaeogeography. Proc. Est. Acad. Sci. Geol., 1997, 46(2), 59–74.
6. Buchardt, B., Nielsen, A. T., Schovsbo, N. H. Alum shale in Scandinavia (Alun skiferen i Skandinavien). Geologisk Tidsskrift, 1997, 3, 1–30 (in Danish).
7. Vine, J. D., Tourtelot, E. B. Geochemistry of black shale deposits – a summary report. Econ. Geol., 1970, 65, 253–272.
http://dx.doi.org/10.2113/gsecongeo.65.3.253
8. Coveney, R. M. Jr., Leventhal, J. S., Glascock, M. D., Hatch, J. R. Origins of metals and organic matter in the Mecca Quarry Shale Member and stratigraphically equivalent beds across the Midwest. Econ. Geol., 1987, 82, 915–933.
http://dx.doi.org/10.2113/gsecongeo.82.4.915
9. Quinby-Hunt, M. S., Wilde, P., Orth, C. J., Berry, W. B. N. Elemental geochemistry of black shales – statistical comparison of low-calcic shales with other shales. In: Metalliferous Black Shales and Related Ore Deposits (Grauch, R. I., Leventhal, J. S., eds.), US Geological Survey Circular, 1989, No. 1037, 8–15.
10. Wilde, P., Quinby-Hunt, M. S., Berry, W. B. N., Orth, C. J. Palaeo-oceanography and biogeography in the Tremadoc (Ordovician) Iapetus Ocean and the origin of the chemostratigraphy of Dictyonema flabelliforme black shales. Geol. Mag., 1989, 126(1), 19–27.
http://dx.doi.org/10.1017/S0016756800006117
11. Hatch, J. R., Leventhal, J. S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol., 1992, 99(1–3), 65–82.
http://dx.doi.org/10.1016/0009-2541(92)90031-Y
12. Algeo, T. J., Maynard, J. B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol., 2004, 206, 289–318.
http://dx.doi.org/10.1016/j.chemgeo.2003.12.009
13. Steiner, M., Wallis, E., Erdtmann, B.-D., Zhao, Y. L., Yang, R. D. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils – insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeocl., 2001, 169(3–4), 165–191.
http://dx.doi.org/10.1016/S0031-0182(01)00208-5
14. Jiang, S. Y., Yang, J. H., Ling, H. F., Chen, Y. Q., Feng, H. Z., Zhao, K. D, Ni, P. Extreme enrichment of polymetallic Ni- Mo-PGE-Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation. Palaeogeogr. Palaeocl., 2007, 254(1–2), 217–228.
http://dx.doi.org/10.1016/j.palaeo.2007.03.024
15. Vaughan, D. J., Sweeney, M., Diedel, G. F. R., Haranczyk, C. The Kupferschiefer: An overview with an appraisal of the different types of mineralization. Econ. Geol., 1989, 84, 1003–1027.
http://dx.doi.org/10.2113/gsecongeo.84.5.1003
16. Sundblad, K., Gee, D. G. Occurrence of a uraniferous-vanadiniferous graphitic phyllite in the Köli Nappes of the Stekenjokk area, central Swedish Caledonides. Geol. Foren. Stock. For., 1984, 106(3), 269–274.
http://dx.doi.org/10.1080/11035898509454645
17. Berry, W. B. N., Wilde, P., Quinby-Hunt, M. S., Orth, C. J. Trace element signatures in Dictyonema shales and their geochemical and stratigraphic significance. Norsk Geol. Tidsskr., 1986, 66, 45–51.
18. Leventhal, J. S. Comparative geochemistry of metals and rare earth elements from the Cambrian alum shale and kolm of Sweden. Sp. Publ. Int., 1990, 11, 203–215.
19. Leventhal, J. S. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States. Miner. Deposita, 1991, 26, 104–112.
http://dx.doi.org/10.1007/BF00195256
20. Schovsbo, N. H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum Shale. Geol. Foren. Stock. For., 2002, 124(2), 107–115.
21. Loog, A. Geochemistry of Lower Ordovician of Estonia. In: Studies of the Institute of Geology, ESSR Academy of Sciences. Tallinn, 1962. No. 10, 273–291 (in Russian).
22. Baukov, S. S. General characteristics of dictyonema shale. In: Geology of Coal and Oil Shale Deposits of the USSR, 11. Nedra, Moscow, 1968, 145–148 (in Russian).
23. Petersell, V., Mineyev, D., Loog, A. Mineralogy and geochemistry of obolus sandstones and dictyonema shale of North Estonia. Acta et Commentationes Universitatis Tartuensis, No. 561, Tartu, 1981, 30–49 (in Russian).
24. Loog, A. On the geochemistry of postsedimentary mineral formation in the Tremadoc graptolitic argillites of North Estonia. Acta et Commentationes Universitatis Tartuensis, No. 527, Tartu, 1982, 44–49 (in Russian).
25. Petersell, V. H., Zhukov, F. I., Loog, A. R., Fomin, Y. A. Origin of Tremadoc kerogenous-bearing siltstones and argillites of North Estonia. Oil Shale, 1987, 4(1), 8–13 (in Russian).
26. Pukkonen, E. M. Major and minor elements in Estonian graptolite argillite. Oil Shale, 1989, 6(1), 11–18 (in Russian).
27. Kallaste, T., Pukkonen, E. Pyrite varieties in Estonian Tremadocian argillite (Dictyonema shale). Proc. Est. Acad. Sci. Geol., 1992, 41(1), 11–22.
28. Pukkonen, E., Rammo, M. Distribution of molybdenum and uranium in the Tremadoc graptolitic argillite (Dictyonema shale) of North-Western Estonia. Bulletin of the Geological Survey of Estonia, 1992, 2(1), 3–15.
29. Loog, A., Petersell, V. The distribution of microelements in Tremadoc graptolitic argillite of Estonia. Acta et Commentationes Universitatis Tartuensis, No. 972, Tartu, 1994, 57–75.
30. Loog, A., Petersell, V. Authigenic siliceous minerals in the Tremadoc graptolitic argillite of Estonia. Proc. Est. Acad. Sci. Geol., 1995, 44(1), 26–32.
31. Heinsalu, H. Lithostratigraphical subdivision of Tremadoc deposits of North Estonia. Proc. Acad. Sci. Estonian SSR, Geology, 1987, 36(2), 66–78 (in Russian).
32. Raudsep, R. Ordovician. Pakerort Stage. Ceratopyge Stage. In: Geology and mineral resources of the Rakvere phosphorite-bearing area (Puura, V., ed.). Valgus, Tallinn, 1987, 29–39 (in Russian).
33. Kaljo, D., Kivimägi, E. On the distribution of graptolites in the Dictyonema shale of Estonia and the noncontemporaneity of its different facies. Proc. Acad. Sci. Estonian SSR, Chem., Geol., 1970, 19(4), 334–341 (in Russian).
34. Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnström, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sandström, H., Willis, J. P. Seven sedimentary rock reference samples from Estonia. Oil Shale, 2000, 17(3), 215–223.
35. Utsal, K., Kivimägi, E., Utsal, V. About the method of investigating Estonian graptolitic argillite and its mineralogy. Acta et Commentationes Universitatis Tartuensis, No. 527, Tartu, 1982, 116–136 (in Russian).
36. Loog, A., Kurvits, T., Aruväli, J., Petersell, V. Grain size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia. Oil Shale, 2001, 18(4), 281–297.
37. Kleesment, A.-L., Kurvits, T. U. Mineralogy of Tremadoc graptolitic argillites of North Estonia. Oil Shale, 1987, 4(2), 130–138 (in Russian).
38. Snäll, S. Mineralogy and maturity of the alum shales of south-central Jämtland, Sweden. Sveriges Geologiska Undersökning (SGU), 1988, Serie C, 818, 1–46.
39. Taylor, S. R., McLennan, S. M. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publication, Oxford, 1985.
40. Gromet, L. P., Dymek, R. F., Haskin, L. A., Korotev, R. L. The “North American shale composite”: its compilation, major and trace element characteristics. Geochim. Cosmochim. Ac., 1984, 48, 2469–2482.
http://dx.doi.org/10.1016/0016-7037(84)90298-9
41. Holland, H. D. Metals in black shales – A reassessment. Econ. Geol., 1979, 74, 1676–1680.
http://dx.doi.org/10.2113/gsecongeo.74.7.1676
42. Coveney, R. M. Jr., Glascock, M. D. A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Appl. Geochem., 1989, 4(4), 347–367.
http://dx.doi.org/10.1016/0883-2927(89)90012-7
43. Yu, B., Dong, H., Widom, E., Chen, J., Lin, C. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. J. Asian Earth Sci., 2009, 34(3), 418–436.
http://dx.doi.org/10.1016/j.jseaes.2008.07.003
44. Leventhal, J. S., Hosterman, J. W. Chemical and mineralogical analysis of Devonian black-shale samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, U.S.A. Chem. Geol., 1982, 37(3–4), 239–264.
http://dx.doi.org/10.1016/0009-2541(82)90081-X
45. Peacor, D. R., Coveney, R. M. Jr., Zhao, G. Authigenic illite and organic matter: the principal hosts of vanadium in the Mecca Quarry shale at Velpen, Indiana. Clay. Clay Miner., 2000, 48(3), 311–316.
http://dx.doi.org/10.1346/CCMN.2000.0480301
46. Calvert, S. E., Pedersen, T. F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol., 1993, 113(1–2), 67–88.
http://dx.doi.org/10.1016/0025-3227(93)90150-T
47. Nameroff, T. J., Balistrieri, L. S., Murray, J. W. Suboxic trace metal geochemistry in the Eastern Tropical North Pacific. Geochim. Cosmochim. Ac., 2002, 66(7), 1139–1158.
http://dx.doi.org/10.1016/S0016-7037(01)00843-2
48. Morford, J. L., Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Ac., 1999, 63(11–12), 1735–1750.
http://dx.doi.org/10.1016/S0016-7037(99)00126-X
49. Chester, R. Marine Geochemistry. Blackwell, London, 2000.
50. Nijenhuis, I. A., Bosch, H.-J., Sinninghe Damsté, J. S., Brumsack, H.-J., De Lange, G. J. Organic matter and trace element rich sapropels and black shales: a geochemical comparison. Earth Planet. Sc. Lett., 1999, 169(3–4), 277–290.
http://dx.doi.org/10.1016/S0012-821X(99)00083-7
51. Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr. Palaeocl., 2006, 232(2–4), 344–361.
http://dx.doi.org/10.1016/j.palaeo.2005.05.011
52. Kochenov, A. V., Baturin, G. N. The paragenesis of organic matter, phosphorus and uranium in marine sediments. Lithology and Mineral Resources, 2002, 37(2), 107–120.
http://dx.doi.org/10.1023/A:1014816315203
53. Grimmer, J. C., Greiling, R. O. Serpentinites and low-K island arc meta-volcanic rocks in the Lower Köli Nappe of the central Scandinavian Caledonides: Late Cambrian – early Ordovician serpentinite mud volcanoes in a forearc basin? Tectonophysics, 2012, 541–543, 19–30.
http://dx.doi.org/10.1016/j.tecto.2012.03.014
54. Quinby-Hunt, M. S., Wilde, P., Orth, C. J.,Berry, W. B. N. The provenance of low-calcic black shales. Miner. Deposita, 1991, 26(2), 113–121.
http://dx.doi.org/10.1007/BF00195257
55. Rudnick R. L., Gao, S. Composition of the continental crust. In: Readings from the Treatise on Geochemistry (Holland, H. D., Turekian, K. K., eds.). Elsevier, Amsterdam, 2010, 131–198.
56. Lev, S. M., McLennan, S. M., Hanson, G. N. Mineralogic controls on REE mobility during black-shale diagenesis. J. Sediment. Res., 1999. Vol. 69. P. 1071–1082.
http://dx.doi.org/10.2110/jsr.69.1071
57. Cruse, A. M., Lyons, T. W., Kidder, D. L. Rare-earth element behavior in phosphates and organic-rich host shales: An example from the Upper Carboniferous of Midcontinent North America. In: Marine Authigenesis: From Global to Microbial (Glenn, C. R., Prévôt-Lucas, L., Lucas, J., eds.), SEPM Special Publication, 2000, 66, 445–453.
58. Lev, S. M., Filer, J. K., Tomascak, P. Orogenesis vs. Diagenesis: Can we use organic-rich shales to interpret the tectonic evolution of a depositional basin? Earth Sci. Rev., 2008, 86(1–4), 1–14.
http://dx.doi.org/10.1016/j.earscirev.2007.07.001
http://dx.doi.org/10.1346/CCMN.2010.0580309