ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
GEOCHEMICAL INVESTIGATION OF LACUSTRINE OIL SHALE IN THE LUNPOLA BASIN (TIBET): IMPLICATIONS FOR PALEOENVIRONMENT AND PALEOCLIMATE; pp. 101–116
PDF | doi: 10.3176/oil.2013.2.02

Authors
TAO SUN, CHENGSHAN WANG, YALIN LI, LICHENG WANG, JIANGLIN HE
Abstract

The Dingqinghu Formation oil shale, located in the centre of the Lunpola basin, represents a potential large lacustrine oil shale resource in Tibet. A geochemical investigation of the oil shale was performed to reconstruct paleoenvironment and paleoclimate during deposition. The total organic carbon (TOC) contents (1.46–11.85%), S2 values (4.79–115.80 mg HC/mg rock) and HI (328–1040 mg HC/mg TOC) of oil shale samples are high, and indicate that the oil shale has a good oil source rock potential. The thermal maturity assessed from PI (0.01–0.09) and Tmax (429–440 °C) shows an immature to early mature stage of the organic matter. The oil shale exhibits characteristics of odd-over-even predominance, maximum n-alkanes peak at nC25 or nC23, a higher proportion of C29 sterane, low δ13Corg values (–29.9 to –26.7‰), a low Pr/Ph ratio (0.03–0.40), high values of the gammacerane index (up to 25.24), and presence of β-carotane, which is consistent with a reducing, stratified and hypersaline palaeo-lake with the main contribution of algae and bacteria to the organic matter (OM). The development history of palaeo-lakes from the Oligocene to the Early Miocene indicates that the climate of the Lunpola basin region during the deposition of oil shale was arid.

References

  1. Qian, J., Wang, S. L. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.

  2. Brassell, S. C., Eglinton, G., Fu, J. M. Biological marker compounds as indicators of the depositional history of the Maoming oil shale. Org. Geochem., 1986, 10(4–6), 927–941.
http://dx.doi.org/10.1016/S0146-6380(86)80030-4

  3. Zhang, S. C., Zhang, B. M., Bian, L. Z., Jin, Z. J., Wang, D. R., Chen, J. F. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago. Sci. China Ser. D-Earth Sci., 2007, 50(4), 527–535.

  4. Fu, X. G., Wang, J., Tan, F. W., Zeng, Y. H. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China): relationships with oil shale formation. Oil Shale, 2009, 26(3), 373–381.
http://dx.doi.org/10.3176/oil.2009.3.03

  5. Fu, X. G., Wang, J., Zeng, Y. H., Li, Z. X., Wang, Z. J. Geochemical and paly­nological investigation of the Shengli River marine oil shale (China): implications for palaeoenvironment and palaeoclimate. Int. J. Coal Geol., 2009, 78(3), 217–224.
http://dx.doi.org/10.1016/j.coal.2009.02.001

  6. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. Int. J. Coal Geol., 2010, 81(3), 191–199.
http://dx.doi.org/10.1016/j.coal.2009.12.006

  7. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., He, J. L. Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Chem. Erde-Geochem., 2011, 71(1), 21–30.
http://dx.doi.org/10.1016/j.chemer.2010.07.003

  8. Xu, Z. Y. Tertiary system and its petroleum potential in the Lunpola Basin, Xizang (Tibet). USGS Open File Rep. 84–420, 1984, 6 pp.

  9. Rowley, D. B., Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439(7077), 677–681.
http://dx.doi.org/10.1038/nature04506

10. Zhai, G. M. et al. (eds). Oil and gas fields in Qinghai and Xizang. In Petroleum Geology of China, Vol. 14. Petroleum Industry Press, Beijing, 1990 (in Chinese).

11. Du, B. W, Tan, F. W., Chen, M. Sedimentary features and petroleum geology of the Lunpola Basin, Xizang. Sedimentary Geology and Tethyan Geology, 2004, 24(4), 46–54 (in Chinese).

12. Ma, L. X., Zhang, E. H., Ju, J. C., Lei, Q. L., Zhou, J. J. Basic characteristics of Palaeogene deposition systems tract in the Lunpola Basin, Xizang (Tibet). Earth Sci., 1996, 21, 174–178 (in Chinese with English abstract).

13. Xia, J. B. Cenozoic of Baingoin and its borders, Xizang (Tibet). Contrib. Geol. Qinghai-Xizang (Tibet) Plateau, 1983, 3, 243-254 (in Chinese with English summary).

14. Xu, Z. Y. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet. Oil Gas Geol., 1980, 1, 153–158.

15. Xu, Z. Y., Zhao, J. P., Wu, Z. L. On the Tertiary continental basins and their petroleum potential in Qinghai-Xizang (Tibet) Plateau with Lunpola Basin as example. Contrib. Geol. Qinghai-Xizang (Tibet) Plateau, 1985, 17, 391–399 (in Chinese with English summary).

16. Xia, B. D., Liu, S. K. Stratigraphy (Lithostratic) of Xizang Autonomous Region. China University of Geosciences Press, Wuhan, 1997 (in Chinese).

17. DeCelles, P. G., Kapp, P., Ding, L., Gehrels, G. E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. BullGeol. Soc. Am., 2007, 119(5–6), 654–680.
http://dx.doi.org/10.1130/B26074.1

18. Peters, K. E. Guidelines for evaluating petroleum source rock using pro­grammed pyrolysis. AAPG Bull., 1986, 70(3), 318–329.

19. Petersen, H. I., Tru, V., Nielsen, L. H., Duc, N. A., Nytoft, H. P. Source rock properties of lacustrine mudstones and coals (Oligocene Dong Ho Formation), onshore Song Hong Basin, northern Vietnam. J. Petrol. Geol., 2005, 28(1), 19–38.
http://dx.doi.org/10.1111/j.1747-5457.2005.tb00068.x

20. Guthrie, J. M., Pratt, L. M. Geochemical indicators of depositional environment and source-rock potential for the Upper Ordovician Maquoketa Group, Illinois Basin. AAPG Bull., 1994, 78(5), 744–757.

21. Talbot, M. R. The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa. In: Fleet, A. J., Kelts, K., Talbot, M. R. (eds.). Lacustrine Petroleum Source Rocks. Geological Society London Special Publications, Oxford, 1988, 40, 29–43.

22. Talbot, M. R., Livingstone, D. A. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr. Palaeocl., 1989, 70(1–3), 121–137.
http://dx.doi.org/10.1016/0031-0182(89)90084-9

23. Boreham, C. J., Summons, R. E., Roksandic, Z., Dowling, L. M., Hutton, A. C. Chemical, molecular and isotopic differentiation of organic facies in the Tertiary lacustrine Duaringa oil shale deposit, Queensland, Australia. Org. Geochem., 1994, 21(6–7), 685–712.
http://dx.doi.org/10.1016/0146-6380(94)90013-2

24. Schouten, S., Rijpstra, W. I. C., Kok, M., Hopmans, E. C., Summons, R. E., Volk­man, J. K., Sinninghe Damste, J. S. Molecular organic tracers of biogeo­chemical processes in a saline meromictic lake (Ace Lake). Geochim. Cosmochim. Acta, 2001, 65(10), 1629–1640.
http://dx.doi.org/10.1016/S0016-7037(00)00627-X

25. Schidlowski, M., Gorzawski, H., Dor, I. Carbon isotopic variations in a solar pond microbial mat: role of environmental gradients as steering variables. Geochim. Cosmochim. Acta, 1994, 58(10), 2289–2298.
http://dx.doi.org/10.1016/0016-7037(94)90011-6

26. Lewan, M. D. Stable carbon isotopes of amorphous kerogens from Phanerozoic sedimentary rocks. Geochim. Cosmochim. Acta, 1986, 50(8), 1583–1591.
http://dx.doi.org/10.1016/0016-7037(86)90121-3

27. Taylor, P., Bennett, B., Jones, M., Larter, S. The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils. Org. Geochem., 2001, 32(2), 341–358.
http://dx.doi.org/10.1016/S0146-6380(00)00176-5

28. Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimno­logic, and paleoclimatic processes. Org. Geochem., 1997, 27(5–6), 213–250.
http://dx.doi.org/10.1016/S0146-6380(97)00049-1

29. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, New York, 1984.

30. Kotarba, M. J., Clayton, J. L. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. Int. J. Coal Geol., 2003, 55(2–4), 73–94.
http://dx.doi.org/10.1016/S0166-5162(03)00082-X

31. Koopmans, M. P., Rijpstra, W. I. C., Klapwijk, M. M., Leeuw, J. W. de, Lewan, M. D., Sinninghe Damste, J. S. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Org. Geochem., 1999, 30(9), 1089–1104.
http://dx.doi.org/10.1016/S0146-6380(99)00088-1

32. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide. Cambridge, Cambridge University Press, 2005.

33. Haven, H. L. ten, Leeuw, J. W. de, Rullkötter, J., Sinninghe Damsté, J. S. Restricted utility of the pristane/phytane ratio as palaeoenvironmental indicator. Nature, 1987, 330(6149), 641–643.
http://dx.doi.org/10.1038/330641a0

34. Wang, L. C., Wang, C. S., Li, Y. L., Zhu, L. D., Wei, Y. S. Sedimentary and organic geochemical investigation of tertiary lacustrine oil shale in the central Tibetan plateau: Palaeolimnological and palaeoclimatic significances. Int. J. Coal Geol., 2011, 86(2–3), 254–265.
http://dx.doi.org/10.1016/j.coal.2011.02.011

35. Dai, S., Ren, D., Tang, Y., Shao, L., Li, S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol., 2002, 51(4), 237–250.
http://dx.doi.org/10.1016/S0166-5162(02)00098-8

36. Jiang, Z. S., Fowler, M. G. Carotenoid-derived alkanes in oils from north­western China. Org. Geochem., 1986, 10(4–6), 831–839.
http://dx.doi.org/10.1016/S0146-6380(86)80020-1

37. Carroll, A. R., Brassell, S. C., Graham, S. A. Upper Permian lacustrine oil shales, southern Junggar basin, northwest China. AAPG Bull., 1992, 76(12), 1874–1902.

38. Brassell, S. C., Sheng, G. Y., Fu, J. M., Eglinton, G. Biological markers in lacustrine Chinese oil shales. In: Fleet, A. J., Kelts, K., Talbot, M. R. (eds.). Lacustrine Petroleum Source Rocks. Geological Society Special Publication, Oxford, 1988, 40, 299–308.

39. Fu, J. M., Sheng, G. Y., Peng, P. G., Brassell, S. C., Eglinton, G., Jiang, J. G. Peculiarities of salt lake sediments as potential source rocks in China. Org. Geochem., 1986, 10(1–3), 119–126.

40. Moldowan, J M., Seifert, W. K., Gallegos, E. J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull., 1985, 69(8), 1255–1268.

41. Sinninghe Damste, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., Leeuw, J. W. de. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta, 1995, 59(9), 1895–1900.
http://dx.doi.org/10.1016/0016-7037(95)00073-9

42. Peters, K. E., Moldowan, J. M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, NJ, Prentice Hall, 1993.

43. Huang, W.-Y, Meinschein, W G. Sterols as ecological indicators. Geochim. Cosmochim. Acta, 1979, 43(5), 739–745.
http://dx.doi.org/10.1016/0016-7037(79)90257-6

44. Czochanska, Z., Gilbert, T. D., Philp, R. P., Sheppard, C. M., Weston, R. J., Wood, T. A., Woolhouse, A. D. Geochemical application of sterane and triterpane biomarkers to a description of oils from the Taranaki Basin in New Zealand. Org. Geochem., 1988, 12(2), 123–135.
http://dx.doi.org/10.1016/0146-6380(88)90249-5

45. Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 1986, 9(2), 83–99.
http://dx.doi.org/10.1016/0146-6380(86)90089-6

46. Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., Fang, X. M. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature, 2007, 445(7128), 635–638.
http://dx.doi.org/10.1038/nature05516

47. Dupont-Nivet, G., Hoorn, C., Konert, M. Tibetan uplift prior to the Eocene- Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology, 2008, 36(12), 987–990.
http://dx.doi.org/10.1130/G25063A.1

48. Harris, N. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr. Palaeocl., 2006, 241(1), 4–15.
http://dx.doi.org/10.1016/j.palaeo.2006.07.009

49. Raymo, M. E., Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359(6391), 117–122.
http://dx.doi.org/10.1038/359117a0

Back to Issue