ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
HEAT CAPACITY OF KUKERSITE OIL SHALE: LITERATURE OVERVIEW; pp. 184–192
PDF | doi: 10.3176/oil.2013.2.08

Authors
NATALJA SAVEST, Vahur Oja
Abstract

The purpose of the present paper has been to get an overview of, evaluate and systematize the existent data on the heat capacity of kukersite oil shale, as well as to find it out whether there is a need for new data. The study has revealed that the respective information is contradictory and that systematized experimental data on the temperature range below the tempera­tures of the most intensive thermal decomposition of oil shale are lacking. Also, the examination of the relevant public literature indicated that the specific heat capacity of kukersite has been investigated by a number of researchers till the 1970s. Later, the above-mentioned literary material has often been quoted. With the aim of making the existent data on the specific heat capacity of kukersite comparable and understandable, a complete literature review has been performed by us. The literature analysis presented in this paper is based only on original sources.

References

  1. Luts, K. Der estländische Brennschiefer – Kukersit, seine Chemie, Technologie und Analyse. Tallinn, 1944 (in German).

  2. Pomerancev, V. V. Thermal constants of solid fuel. (1935–1936). In: Issle­do­vanije processov gorenija natural’nogo topliva. Gosenergizdat, 1948, 97–103 (in Russian).

  3. Dobrjanski, A. F. Bituminous shales of SSSR. Lengostoptehizdat. Moskva, Lenin­grad, 1947 (in Russian).

  4. Kollerov, D. K., Matveeva, N. I. The specific heat capacities of technological oil shale, oil shale coke and oil shale concentrate. In: VNIIPS. Himija i tehno­logija gorjuchikh slancev i produktov pererabotki. Series 4. Leningrad, 1955, 236–243 (in Russian).

  5. Kollerov, D. K. The heat capacities of the Baltic oil shale mineral part and residue of coke ash. In: VNIIPS. Himija i tehnologija gorjuchikh slancev i pro­duk­tov pererabotki. Series 7. Leningrad, 1959, 64–79 (in Russian).

  6. Skrynnikova, G. N., Avdonina, E. S., Goljand, M. M., Ahmedova, L. J. The study of thermophysical properties of the Baltic oil shale, layers, oil shale coke and ash. In: VNIIPS. Series 7. Leningrad, 1959, 80–94 (in Russian).

  7. Agroskin, A., Goncharov, E. The determination of the heat capacity of Estonian Schist-Kukersite in the process of heating till 900 °C. In: Izvestija AN SSSR, t. HU, serija fiz.-mat. i tehn. nauk, NI. 1966, 94–97 (in Russian).

  8. Berkovich, A. J., Levy, J. H., Young, B. R., Schmidt, S. J. Predictive heat model for Australian oil shale drying and retorting. Ind. Eng. Chem. Res., 2000, 39(7), 2592–2600.
http://dx.doi.org/10.1021/ie990942g

  9. Wen, C. S., Yen, T. F. A Comparison Between the Properties of Devonian Shale and Green River Oil Shale via Thermal Analysis. In: Thermal Hydro­carbon Chemistry, 1979, Chap. 20, 343–351.

10. Rajeshwar, K., Nottenburg, R. Dubow, J. Review - Thermophysical properties of oil shales. J. Mater. Sci., 1979, 14, 2025–2052.
http://dx.doi.org/10.1007/BF00688409

11. Merrick,  D. Mathematical models of the thermal decomposition of coal: 2. Specific heats and heats of reaction. Fuel, 1983, 62(5), 540–546.
http://dx.doi.org/10.1016/0016-2361(83)90224-7

12. Maloney, D. J., Sampath, R., Zondlo, J. W. Heat capacity and thermal con­ductivity considerations for coal particles during the early stages of rapid heating. Combust. Flame, 1999, 116(1–2), 94–104.
http://dx.doi.org/10.1016/S0010-2180(98)00044-3

13. Teja, A. S. Simple method for the calculation of heat capacities of liquid mixtures. J. Chem. Eng. Data, 1983, 28(1), 83–85.
http://dx.doi.org/10.1021/je00031a025

14. Torpan, B. K. Chemical and mineralogical content of kukersite beds. In: Trans­actions of Tallinn Polytechnical Institute. Series А, 1954, 57 (22), 22–31 (in Russian).

15. Wang, Y., Rajeshwar, K., Nottenburg, R. N., Dubow, J. B. Thermophysical properties of oil shale minerals. Thermochim. Acta, 1979, 30 (1–2), 141–151.
http://dx.doi.org/10.1016/0040-6031(79)85049-2

16. Grønvold, F., Westrum, E. F., Jr. Heat capacities of iron disulfides. Thermo­dynamics of marcasite from 5 to 700  K, pyrite from 300 to 780  K, and the transformation of marcasite to pyrite. J. Chem. Thermodyn., 1976, 8(11), 1039–1048.
http://dx.doi.org/10.1016/0021-9614(76)90135-X

17. Hemingway, B. S. Quartz: Heat capacities from 340 to 1000  K and revised values for the thermodynamic properties. Am. Mineral., 1987, 72, 273–279.

18. Jacobs, G. K., Kerrick, D. M., Krupka, K. M. The high-temperature heat capacity of natural calcite (CaCO3). Phys. Chem. Miner., 1981, 7(2), 55–59.
http://dx.doi.org/10.1007/BF00309451

19. Krupka, K. M., Hemingway, B. S., Robie, R. A., Kerrick, D. M. High-tempera­ture heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. Am. Mineral., 1985, 70, 261–271.

20. Sharp, Z. D., Essene, E. J., Anovitz, L. M., Metz, G. W., Westrum, E. F.,Jr., Hemingway, B. S., Valley, J. W. The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2. Geochim. Cosmochim. Ac., 1986, 50(7), 1475–1484.
http://dx.doi.org/10.1016/0016-7037(86)90321-2

21. Stout, J. W., Robie, R. A. Heat capacity from 11 to 300 K, entropy, and heat of formation of dolomite. J. Phys. Chem., 1963, 67(11), 2248–2252.
http://dx.doi.org/10.1021/j100805a002

Back to Issue