ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
NITROGEN ISOTOPES IN KUKERSITE AND BLACK SHALE IMPLYING ORDOVICIAN-SILURIAN SEAWATER REDOX CONDITIONS; pp. 60–75
PDF | doi: 10.3176/oil.2013.1.06

Authors
ENLI KIIPLI, TARMO KIIPLI
Abstract

For the first time data on nitrogen isotopes from the Ordovician-Silurian sedimentary rocks of the Baltic Basin are reported. Supplementary samples come from several regions worldwide. The data reveal the existence of different primary bioproductivity pathways in the Ordovician-Silurian. During the formation of black shale surface waters were oxygen-poor and maintained N2-fixing primary production indicated by δ15N –0.3‰ on average. The average δ15N of kukersite oil shale is +7.4‰. The positive δ15N values are in accordance with the formation of kukersite in oxic waters, showing that Gloeocapsomorpha prisca was a nitrate-using not N2-fixing cyanobacterium-like organism. The black shale samples from the deep shelf suggest that seawater, including the photic zone, often suffered from deficiency of oxygen.

References

  1. Berry, W. B. N., Wilde, P., Quinby-Hunt, M. S. Paleozoic (Cambrian through Devonian) anoxitropic biotopes. Palaeogeogr. Palaeocl., 1989, 74, 3–13.
http://dx.doi.org/10.1016/0031-0182(89)90016-3

  2. Railsback, L. B., Ackerly, S. C., Anderson, T. F., Cisne, J. L. Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature, 1990, 343, 156–159.
http://dx.doi.org/10.1038/343156a0

  3. Hoefs, J. Stable isotope geochemistry. Springer-Verlag, Berlin Heidelberg, 2009.

  4. Canfield, D. E., Glazer, A. N., Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science, 2010, 330, 192–196.
http://dx.doi.org/10.1126/science.1186120

  5. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 1999, 400, 525–531.
http://dx.doi.org/10.1038/22941

  6. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 1997, 387, 272–275.
http://dx.doi.org/10.1038/387272a0

  7. Struck, U., Emeis, K., Vos, M., Krom, M. D., Rau, G. H. Biological pro­ductivity during sapropel S5 formation in the Eastern Mediterranean Sea: Evidence from stable isotopes of nitrogen and carbon. Geochim. Cosmochim. Acta, 2001, 65, 3249–3266.
http://dx.doi.org/10.1016/S0016-7037(01)00668-8

  8. Sachs, J. P., Repeta, D. J. Oligotrophy and nitrogen fixation during Eastern Mediterranean sapropel events. Science, 1999, 286, 2485–2488.
http://dx.doi.org/10.1126/science.286.5449.2485

  9. Lehmann, M. F., Bernasconi, S. M., Barbieri, A., Macenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmo­chim. Acta, 2002, 66, 3573–3584.
http://dx.doi.org/10.1016/S0016-7037(02)00968-7

10. Calvert, S. E, Nielsen B., Fontugne, M. R. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature, 1992, 359, 223–225.
http://dx.doi.org/10.1038/359223a0

11. Arnaboldi, M., Meyers, P. A. Patterns of organic carbon and nitrogen isotopic compositions of latest Pliocene sapropels from six locations across the Medi­terranean Sea. Palaeogeogr. Palaeocl., 2006, 235, 149–167.
http://dx.doi.org/10.1016/j.palaeo.2005.09.027

12. Anbar, A. D., Knoll, A. H. Proterozoic ocean chemistry and evolution: A bio­inorganic bridge? Science, 2002, 297, 1137–1142.
http://dx.doi.org/10.1126/science.1069651

13. Saltzman, M. R. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 2005, 33, 573–576.
http://dx.doi.org/10.1130/G21535.1

14. Voitkevich, G. V., Miroshnikov, A. E., Povarennykh, A. S., Prokhorov, V. G. Kratkii spravochnik po geochimii, Nedra, Moscow, 1981 (in Russian).

15. Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20, 253–263.

16. Erdtmann, B. D. The planktonic nema-bearing Rhabdinopora flabelliformis (Eichwald, 1840) versus benthonic root-bearing Dictyonema Hall, 1852. Proc. Estonian Acad. Sci. Geol., 1986, 35, 109–114 (in Russian with English summary).

17. Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnstrom, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sand­strom, H., Willis, J. P. Seven sedimentary rock reference samples from Estonia. Oil Shale, 2000, 17, 215–223.

18. Cocks, L. R., McKerrow, W. S., Verniers, J. The Silurian of Avalonia. In: Silurian lands and seas (Landing, E., Johnson, M.E., eds.), New York State Museum Bulletin, 2003, 493, 35–53.

19. Männil, R. Evolution of the Baltic basin during the Ordovician. Valgus Publishers, Tallinn, 1966 (in Russian with English summary).

20. Bauert, H., Kattai,V. Kukersite oil shale. In: Geology and mineral resources of Estonia (Raukas, A., Teedumäe, A., eds.), Estonian Academy Publishers, Tallinn, 1997, 313–327.

21. Kõrts, A., Veski, R. Scanning electron microscopy of Gloeocapsomorpha as produced from kerogen oxidation. Oil Shale, 1994, 11, 293–303.

22. Foster, C. B., Wicander, R. Reed, J. D. Gloeocapsomorpha prisca Zalessky 1917: A new study part II: origin of kukersite, a new interpretation. Geobios, 1990, 23, 133–140.
http://dx.doi.org/10.1016/S0016-6995(06)80045-8

23. Mastalerz, M., Schimmelmann, A., Hower, J. C., Lis, G., Hatch, J., Jacob­son, S. R. Chemical and isotopic properties of kukersites from Iowa and Estonia. Org. Geochem., 2003, 34, 1419–1427.
http://dx.doi.org/10.1016/S0146-6380(03)00138-4

24. Foster, C. B., O’Brien, G. W., Watson, S. T. Hydrocarbon source potential of the Goldwyer Formation, Barbwire Terrace, Canning Basin, Western Australia. APEA Journal, 1986, 26, 142–155.

25. Winchester-Seeto, T., Foster, C., O’Leary, T. The environmental response of Middle Ordovician large organic-walled microfossils from the Goldwyer and Nita Formations, Canning Basin, Western Australia. Rev. Palaeobot. Palyno., 2000, 113, 197–212.
http://dx.doi.org/10.1016/S0034-6667(00)00060-9

26. Stasiuk, L. D., Osadetz, K. G. The life cycle and phyletic affinity of Gloeocapsomorpha prisca Zalessky 1917 from Ordovician rocks in the Canadian Williston Basin. Current Research, Part D, Geological Survey of Canada, Paper 89-1D, 1990, 123–137.

27. Haidl, F. M., Holmden, C., Nowlan, G. S., Fanton, K. C. Preliminary report on conodont and Sm-Nd isotope data from Upper Ordovician Red River strata (Herald and Yeoman formations) in the Williston Basin, Berkley et al Midale 12-2-7-11W2, southeastern Saskatchewan. Summary of Investigations, 2003, 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2003-4.1, CD-ROM, Paper A-1, 13 p.

28. Pancost, R. D., Freeman, K. H., Patzkowsky, M. E. Organic-matter source varia­tion and expression of a late Middle Ordovician carbon isotope excursion, Geology, 1999, 27, 1015–1018.
http://dx.doi.org/10.1130/0091-7613(1999)027<1015:OMSVAT>2.3.CO;2

29. Aaloe, A., Viiding, H. Lithologic classification of industrial kukersite deposits. Proc. Estonian Acad. Sci. Geol., 1983, 4, 157–162 (in Russian).

30. Loydell, D. K., Männik, P., Nestor, V. Integrated biostratigraphy of the lower Silurian of the Aizpute-41 core, Latvia. Geol. Mag., 2003, 140, 205–229.
http://dx.doi.org/10.1017/S0016756802007264

31. Melchin, M. J., Holmden, C. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: Implications for global correlation and sea-level change. GFF, 2006, 128, 173–180.
http://dx.doi.org/10.1080/11035890601282173

32. Kaljo, D., Martma, T. Carbon isotopic composition of Llandovery rocks (East Baltic Silurian) with environmental interpretation. Proc. Estonian Acad. Sci. Geol., 2000, 49, 267–283.

33. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damsté, J. S., Tege­laar, E. W., De Leeuw, J. W. Characterization of Estonian kukersite by spectroscopy and pyrolysis: evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen. Org. Geochem., 1990, 16, 873–888.
http://dx.doi.org/10.1016/0146-6380(90)90124-I

34. Kiipli, E., Kiipli, T., Kallaste, T. Ainsaar, L. Distribution of phosphorus in the Middle and Upper Ordovician Baltoscandian carbonate palaeobasin. Est. J. Earth Sci., 2010, 59, 247–255.
http://dx.doi.org/10.3176/earth.2010.4.01

35. Kiipli, E. Geochemistry of Llandovery black shales in the Aizpute-41 core, West Latvia. Proc. Estonian Acad. Sci. Geol., 1997, 46, 127–145.

36. Kiipli, E. Redox changes in the deep shelf of East Baltic Basin in Aeronian and early Telychian (Early Silurian). Proc. Estonian Acad. Sci. Geol., 2004, 53, 94–124.

37. Struck, U., Pollehne F., Bauerfeind E., Bodungen B. Sources of nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper) – results from sediment trap studies. J. Marine Syst., 2004, 45, 91–101.
http://dx.doi.org/10.1016/j.jmarsys.2003.11.012

38. Kiipli, E., Kiipli, T., Kallaste, T. Bioproductivity rise in the East Baltic epi­continental sea in the Aeronian (Early Silurian). Palaeogeogr. Palaeocl., 2004, 205, 255–272.
http://dx.doi.org/10.1016/j.palaeo.2003.12.011

39. Kiipli, E., Kiipli, T., Kallaste, T. Reconstruction of currents in the Mid-Ordovician–Early Silurian central Baltic Basin using geochemical and minera­logical indicators. Geology, 2009, 37, 271–274.
http://dx.doi.org/10.1130/G25075A.1

Back to Issue