Shale oil samples were produced by pyrolysis of Dachengzi oil shale, China, in a fixed bed reactor at a heating rate ranged from 5 to 20 oC min–1 under argon atmosphere, at the same final temperature of 520 oC and residence time of 20 minutes. Positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was employed to study the influence of heating rate on the basic nitrogen species content in the shale oil. The results show that increasing the heating rate results in the increase of total and basic nitrogen contents and the number of basic nitrogen species. Among all basic classes identified from positive-ion ESI FT-ICR mass spectra, the relative abundance of N1 class decreases while that of N1O1, N1O2, N1O3 and N2 classes increases as heating rate increases. With increasing heating rate the relative abundance of pyridines, whose DBE is 4, decreases significantly and that of N1 class species with DBE = 5–11 slightly, while species with DBE over 11 increase slightly. Furthermore, for pyridines and quinolines (DBE = 7) a relative obvious decrease in relative abundance is mainly observed in those species whose carbon numbers remain between 21 and 37 as heating rate increases. The relative abundance of N1O1 and N1O2 class species, whose DBE is in the range of 10–21, increases.
1. Shue, F. F., Yen, T. F. Concentration and selective identification of nitrogen- and oxygen-containing compounds in shale oil. Anal. Chem., 1981, 53(13), 2081–2084.
http://dx.doi.org/10.1021/ac00236a030
2. Regtop, R. A., Crisp, P. T., Ellis, J. Chemical characterization of shale oil from Rundle, Queensland. Fuel, 1982, 61(2), 185–192.
http://dx.doi.org/10.1016/0016-2361(82)90233-2
3. Rovere, C. E., Crisp, P. T., Ellis, J., Bolton, P. D. Chemical characterization of shale oil from Condor, Australia. Fuel, 1983, 62(11), 1274–1282.
http://dx.doi.org/10.1016/S0016-2361(83)80009-X
4. Korth, J., Ellis. J., Crisp, P. T., Hutton, A. C. Chemical characterization of shale oil from Duaringa, Australia. Fuel, 1988, 67(10), 1331–1335.
http://dx.doi.org/10.1016/0016-2361(88)90113-5
5. Guo, S. H., Ruan, Z. The composition of Fushun and Maoming shale oils. Fuel, 1995, 74(11), 1719–1721.
http://dx.doi.org/10.1016/0016-2361(95)00137-T
6. Ballice, L. Classification of aliphatic hydrocarbons formed at temperature-programmed co-pyrolysis of Turkish oil shales of kerogen type І and II. Oil Shale, 2003, 20(1), 33–46.
7. Kekisheva, L., Krainyukova, N., Zhirjakov, Yu., Soone, J. A review on basic methods of extraction of neutral oxygen compounds from shale oil, their composition and properties. Oil Shale, 2004, 21(2), 173–178.
8. Nazzal, J. M. The presence of polycyclic aromatic hydrocarbons (PAH) in oil obtained at pyrolysis of Jordan oil shale. Oil Shale, 2007, 24(3), 465–475.
9. Poulson, R. E. Nitrogen and sulfur in raw and refined shale oils. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem., 1975, 20(2), 183–197.
10. Fathoni, A. Z., Batts, B. D. A literature review of fuel stability studies with a particular emphasis on shale oil. Energ. Fuel., 1992, 6(6), 681−693.
http://dx.doi.org/10.1021/ef00036a001
11. Holmes, S. A., Thompson, L. F. Nitrogen compound distributions in hydrotreated shale oil products from commercial-scale refining. Fuel, 1983, 62(6), 709–717.
http://dx.doi.org/10.1016/0016-2361(83)90312-5
12. Laredo, G. C., Leyva, S., Alvarez, R., Mares, Ma. T., Castillo, J., Cano, J. L. Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of Mexican crudes. Fuel, 2002, 81(10), 1341–1350.
http://dx.doi.org/10.1016/S0016-2361(02)00047-9
13. Nagai, M., Kabe, T. Selectivity of molybdenum catalyst in hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation: Effect of additives on dibenzothiophene hydrodesulfurization. J. Catal., 1983, 81(2), 440–449.
http://dx.doi.org/10.1016/0021-9517(83)90182-3
14. La Vopa, V., Satterfield, C. N. Poisoning of thiophene hydrodesulfurization by nitrogen compounds. J. Catal., 1988, 110(2), 375–387.
http://dx.doi.org/10.1016/0021-9517(88)90328-4
15. Chishti, H. M., Williams, P. T. Aromatic and hetero-aromatic compositional changes during catalytic hydrotreatment of shale oil. Fuel, 1999, 78(15), 1805–1815.
http://dx.doi.org/10.1016/S0016-2361(99)00089-7
16. Williams, P. T., Nazzal, J. M. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale. J. Anal. Appl. Pyrol., 1995, 35(2), 181–197.
http://dx.doi.org/10.1016/0165-2370(95)00908-9
17. Guo, S. H., Qin, K. Z. Nitro-containing compounds in the Chinese light shale oils. Oil Shale, 1993, 10(2–3), 165–177.
18. Ekinci, E., Türkay, S., Çitiroğlu, M., Akar, A. Nitrogen compounds in pyrolysis produced liquids from two Turkish oil shales. Fuel Process. Technol., 1994, 37(2), 175–184.
http://dx.doi.org/10.1016/0378-3820(94)90014-0
19. Liu, C. J., Zhang, G. L. Non-hydrocarbon Compounds in Petroleum and Its Productions. Petrochemical Press, Beijing, 1991 (in Chinese).
20. Qian, K., Rodgers, R. P., Hendrickson, C. L., Emmett, M. R., Marshall, A. G. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energ. Fuel., 2001, 15(2), 492–498.
http://dx.doi.org/10.1021/ef000255y
21. Zhu, X. C., Shi, Q., Zhang, Y. H., Pan, N., Xu, C. M., Chung, K. H., Zhao, S. Q. Characterization of nitrogen compounds in coker heavy gas oil and its subfractions by liquid chromatographic separation followed by Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2011, 25(1), 281–287.
http://dx.doi.org/10.1021/ef101328n
22. Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G. Elemental composition analysis of processed and unprocessed diesel fuel by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2001, 15(5), 1186–1193.
http://dx.doi.org/10.1021/ef010028b
23. Klein, G. C., Angström, A., Rodgers, R. P., Marshall, A. G. Use of saturates/ aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2006, 20(2), 668-672.
http://dx.doi.org/10.1021/ef050353p
24. Klein, G. C., Rodgers, R. P., Marshall, A. G. Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry. Fuel, 2006, 85(14–15), 2071–2080.
http://dx.doi.org/10.1016/j.fuel.2006.04.004
25. Shi, Q., Xu, C. M., Zhao, S. Q., Chung, K. H., Zhang, Y. H., Gao, W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2010, 24(1), 563–569.
http://dx.doi.org/10.1021/ef9008983
26. Bae, E. J., Na, J.-G., Chung, S. H., Kim, H. S., Kim, S. Identification of about 30 000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil. Energ. Fuel., 2010, 24(4), 2563–2569.
http://dx.doi.org/10.1021/ef100060b
27. Jin, J. M., Kim, S., Birdwell, J. E. Molecular characterization and comparison of shale oils generated by different pyrolysis methods. Energ. Fuel., 2012, 26(2), 1054−1062.
http://dx.doi.org/10.1021/ef201517a
28. Chen, X. B., Shen, B. X., Sun, J. P., Wang, C. X., Shan, H. H., Yang, C. H., Li, C. Y. Characterization and comparison of nitrogen compounds in hydrotreated and untreated shale oil by electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Energ. Fuel., 2012, 26(3), 1707–1714.
http://dx.doi.org/10.1021/ef201500r
29. Han, X. X., Jiang, X. M., Cui, Z. G., Liu, J. G., Yan, J. W. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters. J. Hazard. Mater., 2009, 175(1–3), 445–451.
30. Nazzal, J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrol., 2002, 62(2), 225–238.
http://dx.doi.org/10.1016/S0165-2370(01)00119-X
31. Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G., Qian, K. Kendriсk mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal Chem., 2001, 73(19), 4676–4681.
32. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel, 1999, 78(6), 653–662.
http://dx.doi.org/10.1016/S0016-2361(98)00190-2
33. Shen, M. S., Lui, A. P., Shadle, L. J., Zhang, G.-Q., Morris, G. J. Kinetic studies of rapid oil shale pyrolysis: 2. Rapid pyrolysis of oil shales in a laminar-flow entrained reactor. Fuel, 1991, 70(11), 1277–1284.
http://dx.doi.org/10.1016/0016-2361(91)90214-U
34. Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., Freund, H., Siskin, M. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energ. Fuel., 2007, 21(3), 1548–1561.
http://dx.doi.org/10.1021/ef060321h
http://dx.doi.org/10.1021/ef200738p