This study focuses on the shale of the Lianggaoshan Formation in the Northeast Sichuan Basin, aiming to analyze the pore structure characteristics and influencing factors of its lithofacies – critical for shale oil exploration, as the area has seen major shale oil and gas exploration breakthroughs. Fresh outcrop shale samples were collected in the field, followed by experiments including polarized-light microscope thin-section identification, X-ray diffraction, total organic carbon analysis, gas adsorption, high-pressure mercury intrusion, and scanning electron microscopy. Four lithofacies were classified. Results show the shale contains micropores, mesopores, and macropores; total organic carbon correlates positively with micropore/mesopore parameters but negatively with macropores, while quartz content shows the opposite. The Frenkel–Halsey–Hill fractal dimension correlates positively with total organic carbon, feldspar, and clay minerals, and negatively with quartz. This provides a key theoretical basis for local Lianggaoshan Formation shale oil exploration.
1. Sun, S., Liang, S., Liu, Y., Liu, D., Gao, M., Tian, Y. et al. A review on shale oil and gas characteristics and molecular dynamics simulation for the fluid behavior in shale pore. Journal of Molecular Liquids, 2023, 376, 121507.
https://doi.org/10.1016/j.molliq.2023.121507
2. Lv, J., Jiang, F., Hu, T., Zhang, C., Huang, R., Hu, M. et al. Control of complex lithofacies on the shale oil potential in ancient alkaline lacustrine basins: the Fengcheng Formation, Mahu Sag, Junggar basin. Geoenergy Science and Engineering, 2023, 224, 211501.
https://doi.org/10.1016/j.geoen.2023.211501
3. Chen, H., Fang, D., Gu, H., Huang, W. Comprehensive evaluation of shale reservoir reconstruction based on microseismic and multidisciplinary integration. Adsorption Science & Technology, 2022, 5095254.
https://doi.org/10.1155/2022/5095254
4. Cheng, G., Wu, C., Jiang, B., Li, F., Li, M., Song, Y. Pore structure evolution of organic-rich shale induced by structural deformation based on shale deformation experiments. Energy, 2024, 306, 132463.
https://doi.org/10.1016/j.energy.2024.132463
5. Jiang, X., Chen, M., Li, Q., Liang, L., Zhong, Z., Yu, B. et al. Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing. Energy, 2022, 254, 124422.
https://doi.org/10.1016/j.energy.2022.124422
6. Hu, S., Zhao, W., Hou, L., Yang, Z., Zhu, R., Wu, S. et al. Development potential and technical strategy of continental shale oil in China.Petroleum Exploration and Development, 2020, 47(4), 877–887.
https://doi.org/10.1016/S1876-3804(20)60103-3
7. Hu, L., Zhu, Y., Chen, S., Du, Z. Fractal characteristics of pore structure of shale in Shuanghe Longmaxi Formation, southern Sichuan Basin. Xinjiang Petroleum Geology, 2013, 34(1), 79–82.
8. Sun, L., Liu, H., He, W., Li, G., Zhang, S., Zhu, R. et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 2021, 48(3), 527–540.
https://doi.org/10.1016/S1876-3804(21)60043-5
9. Geng, Y., Liang, W., Liu, J., Cao, M., Kang, Z. Evolution of pore and fracture structure of oil shale under high temperature and high pressure. Energy & Fuels, 2017, 31(10), 10404–10413.
https://doi.org/10.1021/acs.energyfuels.7b01071
10. Liu, Z., Meng, Q., Dong, Q., Zhu, J., Guo, W., Ye, S. et al. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15–41.
https://doi.org/10.3176/oil.2017.1.02
11. Atchley, S. C., Crass, B. T., Prince, K. C. The prediction of organic-rich reservoir facies within the Late Pennsylvanian Cline shale (also known as Wolfcamp D), Midland Basin, Texas. AAPG Bulletin, 2021, 105(1), 29–52.
https://doi.org/10.1306/07272020010
12. Zheng, X., Zhang, B., Sanei, H., Bao, H., Meng, Z., Wang, C. et al. Pore structure characteristics and its effect on shale gas adsorption and desorption behavior. Marine and Petroleum Geology, 2019, 100, 165–178.
https://doi.org/10.1016/j.marpetgeo.2018.10.045
13. Cheng, G., Wu, C., Jiang, B., Li, F., Li, M., Song, Y. Pore structure evolution of organic-rich shale induced by structural deformation based on shale deformation experiments. Energy, 2024, 306, 132463.
https://doi.org/10.1016/j.energy.2024.132463
14. Wang, Q., Hu, Q., Zhao, C., Zhang, C., Ilavsky, J., Yu, L. et al. Integrated experimental studies of pore structure and fluid uptake in the Bossier Shale in eastern Texas, USA. Fuel, 2025, 384, 133926.
https://doi.org/10.1016/j.fuel.2024.133926
15. Chen, S., Gong, Z., Li, X., Wang, H., Wang, Y., Zhang, Y. Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation. Geoscience Frontiers, 2021, 12(6), 101244.
https://doi.org/10.1016/j.gsf.2021.101244
16. Wang, X., Hou, J., Li, S., Dou, L., Song, S., Kang, Q. et al. Insight into the nanoscale pore structure of organic-rich shales in the Bakken Formation, USA. Journal of Petroleum Science and Engineering, 2020, 191, 107182.
https://doi.org/10.1016/j.petrol.2020.107182
17. Chen, X., Tang, X., Liu, C., Zhou, X., Guo, S., Yin, H. Implications of temperature for the modification of high-overmature shale reservoirs: experimental and numerical analysis. SPE Journal, 2024, 29(08), 4218–4231.
https://doi.org/10.2118/219762-PA
18. Hu, D., Wei, Z., Liu, R., Wei, X., Chen, F., Liu, Z. Enrichment control factors and exploration potential of lacustrine shale oil and gas: a case study of Jurassic in the Fuling area of the Sichuan Basin. Natural Gas Industry B, 2022, 9(1), 1–8.
https://doi.org/10.1016/j.ngib.2021.08.012
19. Hu, D., Wei, Z., Liu, R., Wei, X., Liu, Z., Chen, F. Major breakthrough of shale oil and gas in Well Taiye 1 in Bashansi Syncline in the Sichuan Basin and its significance. China Petroleum Exploration, 2021, 26(2), 21–32.
https://doi.org/10.3969/j.issn.1672-7703.2021.02.003
20. Fang, R., Jiang, Y., Sun, S., Luo, Y., Qi, L., Dong, D. et al. Controlling factors of organic matter accumulation and lacustrine shale distribution in Lianggaoshan Formation, Sichuan Basin, SW China. Frontiers in Earth Science, 2023, 11, 1218215.
https://doi.org/10.3389/feart.2023.1218215
21. Bai, X., Wang, X., Wang, M., Li, J., Lu, S., Yang, X. et al. Occurrence characteristics and factors that influence shale oil in the Jurassic Lianggaoshan Formation, northeastern Sichuan Basin. Marine and Petroleum Geology, 2025, 171, 107197.
https://doi.org/10.1016/j.marpetgeo.2024.107197
22. Wang, X., Wang, M., Zhao, C., Yang, X., Jia, Y., Wu, R. et al. Reservoir characteristics and controlling factors of the middle–high maturity multiple lithofacies reservoirs of the Lianggaoshan Formation shale strata in the northeastern Sichuan basin, China. Marine and Petroleum Geology, 2024, 161, 106692.
https://doi.org/10.1016/j.marpetgeo.2024.106692
23. He, W., He, H., Wang, Y., Cui, B., Meng, Q., Guo, X. et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin. China Petroleum Exploration, 2022, 27(1), 40–49.
https://doi.org/10.3969/j.issn.1672-7703.2022.01.004
24. Chen, S., Gao, X., Wang, L., Lu, J., Liu, C., Tang, H. et al. Factors controlling oiliness of Jurassic Lianggaoshan tight sands in central Sichuan Basin, SW China. Petroleum Exploration and Development, 2014, 41(4), 468–474.
https://doi.org/10.1016/S1876-3804(14)60053-7
25. Kane, O. I., Hu, M., Cai, Q., Deng, Q., Yang, W., Zuo, M. Sedimentary facies, lithofacies paleogeography, and an evaluation of the Ordovician sequences in the Sichuan Basin, southwest China. Marine and Petroleum Geology, 2023, 149, 106096.
https://doi.org/10.1016/j.marpetgeo.2023.106096
26. He, W., Bai, X., Meng, Q., Li, J., Zhang, D., Wang, Y. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin. Acta Petrolei Sinica, 2022, 43(7), 885–898.
https://doi.org/10.7623/syxb202207001
27. Schlanser, K., Grana, D., Campbell-Stone, E. Lithofacies classification in the Marcellus Shale by applying a statistical clustering algorithm to petrophysical and elastic well logs. Interpretation, 2016, 4(2), 31–49.
https://doi.org/10.1190/INT-2015-0128.1
28. Bhattacharya, S., Carr, T. R., Pal, M. Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: case studies from the Bakken and Mahantango-Marcellus Shale, USA. Journal of Natural Gas Science and Engineering, 2016, 33, 1119–1133.
https://doi.org/10.1016/j.jngse.2016.04.055
29. Wang, D., Chen, C., Liu, Z., Yang, S., Liu, M., Xie, J. Main controlling factors for oil and gas enrichment in Jurassic laminated shale in Fuxing area of Sichuan Basin. Petroleum Geology & Experimentation, 2024, 46(2), 319–332.
https://doi.org/10.11781/sysydz202402319
30. Cheng, D., Zhang, Z., Hong, H., Zhang, S., Qin, C., Yuan, X. et al. Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China. Petroleum Exploration and Development, 2023, 50(2), 293–305.
https://doi.org/10.1016/S1876-3804(23)60388-X
31. Wang, Y., Zhou, S., Liang, F., Huang, Z., Li, W., Yan, W. et al. Reservoir space characterization of Ordovician Wulalike Formation in northwestern Ordos Basin, China. Processes, 2023, 11(9), 2791.
https://doi.org/10.3390/pr11092791
32. Zhou, X., Zhao, Z. Digital evaluation of nanoscale-pore shale fractal dimension with microstructural insights into shale permeability. Journal of Natural Gas Science and Engineering, 2020, 75, 103137.
https://doi.org/10.1016/j.jngse.2019.103137
33. Yan, H., Zhou, T., Zhou, X., Liu, X., Tang, X. Non-monotonic evolution and spatial reorganization mechanism of thermally induced micro-damage in sandstone. Advances in Geo-Energy Research, 2025, 17(2), 135–148.
https://doi.org/10.46690/ager.2025.08.05
34. IUPAC, I.U.O.P. Physical Chemistry Division Commission on Colloid and Surface Chemistry, Subcommittee on Characterization of Porous Solids: Recommendations for the characterization of porous solids (technical report). Pure and Applied Chemistry, 1994, 66(8), 1739–1758.
35. Pan, Y., Ji, B., Zhang, W., Knott, K., Xia, Y., Li, Q. et al. Topography and structural regulation-induced enhanced recovery of lithium from shale gas produced water via polyethylene glycol functionalized layered double hydroxide. Journal of Industrial and Engineering Chemistry, 2025, 145, 372–383.
https://doi.org/10.1016/j.jiec.2024.10.032
36. Wang, J., Zhang, P., Lu, S., Lin, Z., Li, W., Zhang, J. et al. Insights into microscopic oil occurrence characteristics in shales from the Paleogene Funing Formation in Subei Basin, China. Petroleum Science, 2025, 22(1), 55–75.
https://doi.org/10.1016/j.petsci.2024.07.025
37. Su, S., Cheng, C., Jiang, Z., Shan, X., Makeen, Y. M., Gao, Z. et al. Microscopic pore structure and connectivity of lacustrine shale of the Shahejie Formation, Zhanhua Sag, Bohai Bay Basin. Geoenergy Science and Engineering, 2023, 226, 211800.
https://doi.org/10.1016/j.geoen.2023.211800
38. Xu, Q., Liu, B., Ma, Y., Song, X., Wang, Y., Chen, Z. Geological and geo-chemical characterization of lacustrine shale: a case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China. Journal of Natural Gas Science and Engineering, 2017, 47, 124–139.
https://doi.org/10.1016/j.jngse.2017.09.008
39. Loucks, R. G., Ruppel, S. C., Wang, X., Ko, L., Peng, S., Zhang, T. et al. Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China. Interpretation, 2017, 5(2), 63–79.
https://doi.org/10.1190/INT-2016-0094.1
40. Liang, F., Zhang, Q., Lu, B., Chen, P., Su, C., Zhang, Y. et al. Pore structure in shale tested by low pressure N2 adsorption experiments: mechanism, geological control and application. Energies, 2022, 15(13), 4875.
https://doi.org/10.3390/en15134875
41. Medina-Rodriguez, B. X., Alvarado, V. Use of gas adsorption and inversion methods for shale pore structure characterization. Energies, 2021, 14(10), 2880.
https://doi.org/10.3390/en14102880
42. Mostefai, R., Kadri, M. M., Senoussi, E., Hacini, M., Awadh, S. M. Pore structure characterization of shale reservoir using nitrogen adsorption-desorption. Iraqi Geological Journal, 2023, 56(1D), 1–13.
https://doi.org/10.46717/igj.56.1D.1ms-2023-4-10
43. Spacapan, J. B., Ruiz, R., Manceda, R., D’Odorico, A., Rocha, E., Vera, E. R. et al. Oil production from a sill complex within the Vaca Muerta Formation. In Integrated Geology of Unconventionals: The Case of the Vaca Muerta Play, Argentina (Minisini, D., Fantín, M., Noguera, I. L., Leanza, H. A., eds). AAPG Memoir 121, 2020, Tulsa.
44. Gale, J. F. W., Fall, A., Yurchenko, I. A., Ali, W. A., Laubach, S. E., Eichhubl, P. et al. Opening-mode fracturing and cementation during hydrocarbon generation in shale: an example from the Barnett Shale, Delaware Basin, West Texas. AAPG Bulletin, 2022, 106(10), 2103–2141.
https://doi.org/10.1306/01062219274
45. Iltaf, K. H., Hu, Q., Fan, M., Oware, P., Wang, Q., Zhao, C. et al. Multiscale pore characterization of the New Albany Shale: insights from complementary analytical techniques. Energy & Fuels, 2025, 39(22), 10356–10373.
https://doi.org/10.1021/acs.energyfuels.5c00862
46. Garum, M., Glover, P. W. J., Lorinczi, P., Micklethwaite, S., Hassanpour, A. Integration of multiscale imaging of nanoscale pore microstructures in gas shales. Energy & Fuels, 2021, 35(13), 10721–10732.
https://doi.org/10.1021/acs.energyfuels.1c00554
47. Ruppert, L. F., Jubb, A. M., Headen, T. F., Youngs, T. G. A., Bandli, B. Impacts of mineralogical variation on CO2 behavior in small pores from producing intervals of the Marcellus Shale: results from neutron scattering. Energy & Fuels, 2020, 34(3), 2765–2771.
https://doi.org/10.1021/acs.energyfuels.9b03744
48. Garum, M., Glover, P. W. J., Lorinczi, P., Drummond-Brydson, R., Hassanpour, A. Micro- and nano-scale pore structure in gas shale using Xμ-CT and FIB-SEM techniques. Energy & Fuels, 2020, 34(10), 12340–12353.
https://doi.org/10.1021/acs.energyfuels.0c02025
49. Fatah, A., Mahmud, H. B., Bennour, Z., Gholami, R., Hossain, M. The impact of supercritical CO2 on the pore structure and storage capacity of shales. Journal of Natural Gas Science and Engineering, 2022, 98, 104394.
https://doi.org/10.1016/j.jngse.2021.104394
50. Sun, Y., Wang, Y., Liu, J., Wang, Y. A pyrolysis study of kerogen and extracted bitumen from a lacustrine shale of the Shahejie Formation and implications for in-situ conversion processes. Journal of Analytical and Applied Pyrolysis, 2024, 183, 106735.
https://doi.org/10.1016/j.jaap.2024.106735
51. Shi, S., Wang, Y., Chen, C., Liu, J., Peng, P. Influence of tectonic evolution processes on burial, thermal maturation and gas generation histories of the Wufeng-Longmaxi shale in the Sichuan Basin and adjacent areas. International Journal of Coal Geology, 2024, 295, 104642.
https://doi.org/10.1016/j.coal.2024.104642
52. Slatt, R. M., O’Brien, N. R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 2011, 95(12), 2017–2030.
https://doi.org/10.1306/03301110145
53. Pfeifer, P., Avnir, D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. The Journal of Chemical Physics, 1983, 79(7), 3558–3565.
https://doi.org/10.1063/1.446210
54. Li, K., Zeng, F., Cai, J., Sheng, G., Xia, P., Zhang, K. Fractal characteristics of pores in Taiyuan formation shale from Hedong coal field, China. Fractals, 2018, 26(02), 1840006.
https://doi.org/10.1142/S0218348X18400066
55. Yang, F., Ning, Z., Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 2014, 115, 378–384.
https://doi.org/10.1016/j.fuel.2013.07.040