Secondary raw materials, such as ashes from the combustion of various fuels, are frequently used as alternatives to virgin raw materials. Among these, oil shale ash, a residue from oil shale power production and the shale oil industry, presents significant potential for use in sectors such as construction and agriculture. However, these materials might contain hazardous substances, such as dioxins, which are by-products of thermal treatment and other industrial processes. To date, the dioxin content in oil shale ash has been insufficiently examined. This article provides a comprehensive analysis of the dioxin content in oil shale ash from both a pilot unit and full-scale facilities. Additionally, the study compares the dioxin concentrations in oil shale ash with those in other types of ash and evaluates compliance with regulatory limits. The results showed that dioxin concentrations in the ash were below the limit of detection, regardless of the combustion technology, plant capacity, use of supplementary fuels, or utilisation of wastewater. The findings contribute new knowledge by highlighting the environmental advantages of oil shale ash as a secondary raw material, particularly due to its comparatively lower dioxin content relative to other types of ash.
1. UNEP (United Nations Environment Programme). Global Resources Outlook 2024: Bend the Trend – Pathways to a Liveable Planet as Resource Use Spikes. UNEP, 2024.
https://www.unep.org/resources/Global-Resource-Outlook-2024 (accessed 2025-03-25).
2. European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe.
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed 2024-11-07).
3. Mary Joseph, A., Snellings, R., Nielsen, P., Matthys, S., De Belie, N. Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy. Construction and Building Materials, 2020, 260, 120485.
https://doi.org/10.1016/J.CONBUILDMAT.2020.120485
4. Fernández-Pereira, C., Leiva, C., Luna-Galiano, Y., Vilches, L. F., Arroyo, F. Improved recycling of a gasification fly ash: an integrated waste management approach within the framework of a Circular Economy. Waste Management, 2024, 187, 31–38.
https://doi.org/10.1016/J.WASMAN.2024.06.029
5. Predeanu, G., Slăvescu, V., Bălănescu, M., Dorina Mihalache, R., Mihaly, M., Marin, A. C. et al. Coal bottom ash processing for capitalization according to circular economy concept. Minerals Engineering, 2021, 170, 107055.
https://doi.org/10.1016/J.MINENG.2021.107055
6. Marinina, O., Nevskaya, M., Jonek-Kowalska, I., Wolniak, R., Marinin, M. Recycling of coal fly ash as an example of an efficient circular economy: a stakeholder approach. Energies, 2021, 14(12), 3597.
https://doi.org/10.3390/EN14123597
7. Saldarriaga, J. F., Gaviria, X., Gene, J. M., Aguado, R. Improving circular economy by assessing the use of fly ash as a replacement of lime pastes reducing its environmental impact. Process Safety and Environmental Protection, 2022, 159, 1008–1018.
https://doi.org/10.1016/J.PSEP.2022.01.074
8. Quina, M. J., Bontempi, E., Bogush, A., Schlumberger, S., Weibel, G., Braga, R. et al. Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy. Science of The Total Environment, 2018, 635, 526–542.
https://doi.org/10.1016/J.SCITOTENV.2018.04.150
9. Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R., Kumar, V. Fly ash for sustainable construction: a review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 2022, 6, 100143. https://doi.org/10.1016/j.clema.2022.100143
10. Kumar, A., Abbas, S., Saluja, S. Utilization of incineration ash as a construction material: a review. Materials Today: Proceedings, 2023.
https://doi.org/10.1016/j.matpr.2023.05.577
11. Usta, M. C., Yörük, C. R., Hain, T., Paaver, P., Snellings, R., Rozov, E. et al. Evaluation of new applications of oil shale ashes in building materials. Minerals, 2020, 10(9), 765.
https://doi.org/10.3390/MIN10090765
12. Demeyer, A., Voundi Nkana, J. C., Verloo, M. G. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology, 2001, 77(3), 287–295.
https://doi.org/10.1016/S0960-8524(00)00043-2
13. Silva, F. C., Cruz, N. C., Tarelho, L. A. C., Rodrigues, S. M. Use of biomass ash-based materials as soil fertilisers: critical review of the existing regulatory framework. Journal of Cleaner Production, 2019, 214, 112–124.
https://doi.org/10.1016/J.JCLEPRO.2018.12.268
14. ACAA (American Coal Ash Association). Coal Ash Recycling Rate Increased in 2023; Ash Harvesting Continued Rapid Growth. ACAA, 2023.
https://acaa-usa.org/wp-content/uploads/2025/05/News-Release-Coal-Ash-Production-and-Use-2023.pdf (accessed 2025-05-27).
15. Stockholm Convention. Stockholm Convention on Persistent Organic Pollutants (POPs) and Annexes Revised in 2019. Stockholm Convention, 2001.
https://pops.int (accessed 2025-04-23).
16. Tame, N. W., Dlugogorski, B. Z., Kennedy, E. M. Formation of dioxins and furans during combustion of treated wood. Progress in Energy and Combustion Science, 2007, 33(4), 384–408.
https://doi.org/10.1016/j.pecs.2007.01.001
17. Stanmore, B. R. The formation of dioxins in combustion systems. Combustionand Flame, 2004, 136(3), 398–427.
https://doi.org/10.1016/j.combustflame.2003.11.004
18. Li, Z., Chen, L., Liu, S., Ma, H., Wang, L., An, C. et al. Characterization of PAHs and PCBs in fly ashes of eighteen coal-fired power plants. Aerosol and Air Quality Research, 2016, 16(12), 3175–3186.
https://doi.org/10.4209/AAQR.2016.10.0430
19. Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M. et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 2006, 93(2), 223–241.
https://doi.org/10.1093/toxsci/kfl055
20. Barnes, D. G. Toxicity equivalents and EPA’s risk assessment of 2,3,7,8-TCDD. Science of The Total Environment, 1991, 104(1–2), 73–86.
https://doi.org/10.1016/0048-9697(91)90008-3
21. Bhavsar, S. P., Reiner, E. J., Hayton, A., Fletcher, R., MacPherson, K. Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another. Environment Inter-national, 2008, 34(7), 915–921.
https://doi.org/10.1016/J.ENVINT.2008.02.001
22. DeVito, M., Bokkers, B., van Duursen, M. B. M., van Ede, K., Feeley, M., Antunes Fernandes Gáspár, E. et al. The 2022 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for polychlorinated dioxins, dibenzofurans and biphenyls. Regulatory Toxicology and Pharmacology, 2024, 146, 105525.
https://doi.org/10.1016/J.YRTPH.2023.105525
23. Dyke, P. H., Stratford, J. Changes to the TEF schemes can have significant impacts on regulation and management of PCDD/F and PCB. Chemosphere, 2002, 47(2), 103–116.
https://doi.org/10.1016/S0045-6535(01)00219-3
24. Hong, B., Garabrant, D., Hedgeman, E., Demond, A., Gillespie, B., Chen, Q. et al. Impact of WHO 2005 revised toxic equivalency factors for dioxins on the TEQs in serum, household dust and soil. Chemosphere, 2009, 76(6), 727–733.
https://doi.org/10.1016/J.CHEMOSPHERE.2009.05.034
25. Knaus, E., Killen, J., Biglarbigi, K., Crawford, P. An overview of oil shale resources. In Oil Shale: A Solution to the Liquid Fuel Dilemma(Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds). ACS Symposium Series, 2010, 1032, 3–20.
https://doi.org/10.1021/bk-2010-1032.ch001
26. Yihdego, Y., Salem, H. S., Kafui, B. G., Veljkovic, Z. Economic geology value of oil shale deposits: Ethiopia (Tigray) and Jordan. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(17), 2079–2096.
https://doi.org/10.1080/15567036.2018.1488015
27. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.
https://doi.org/10.3176/oil.2003.3.02
28. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Heidelberg, 1984.
https://doi.org/10.1007/978-3-642-87813-8
29. Ots, A. Estonian oil shale properties and utilization in power plants. Energetika, 2007, 4(2), 8–18.
30. Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20(3), 253–263.
https://doi.org/10.3176/oil.2003.3.03
31. Nešumajev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113.
https://doi.org/10.3176/oil.2019.2S.02
32. Estonian Environment Agency. Waste statistics.
https://tableau.envir.ee/views/Avalikud_pringud_2020-2022/Riigitasand?%3Aembed=y&%3Aiid=4&%3AisGuestRedirectFromVizportal=y(accessed 2023-12-19).
33. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale-CFBC boilers. Oil Shale, 2005, 22(4), 407–419.
https://doi.org/10.3176/oil.2005.4S.04
34. Usta, M. C., Yörük, C. R., Uibu, M., Hain, T., Gregor, A., Trikkel, A. CO2 curing of Ca-rich fly ashes to produce cement-free building materials. Minerals, 2022, 12(5), 513.
https://doi.org/10.3390/MIN12050513
35. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva thermal power plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
https://doi.org/10.3176/oil.2010.4.07
36. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 2013, 30(1), 6–18.
https://doi.org/10.3176/oil.2013.1.02
37. Ummik, M.-L., Järvik, O., Reinik, J., Konist, A. Ecotoxicity assessment of ashes from calcium-rich fuel combustion: contrasting results and regulatory implications. Environmental Science and Pollution Research, 2024, 31, 48523–48533.
https://doi.org/10.1007/s11356-024-34387-3
38. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behaviour of ash in ash fields. Proceedings of the 20th International Conference on Fluidized Bed Combustion, 2009, 1054–1060.
https://doi.org/10.1007/978-3-642-02682-9_164
39. Uibu, M., Tamm, K., Viires, R., Reinik, J., Somelar, P., Raado, L.-M. et al. The composition and properties of ash in the context of the modernisation of oil shale industry. Oil Shale, 2021, 38(2), 155–176.
https://doi.org/10.3176/oil.2021.2.04
40. Raado, L.-M., Hain, T., Liisma, E., Kuusik, R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160.
https://doi.org/10.3176/oil.2014.2.05
41. Uibu, M., Somelar, P., Raado, L.-M., Irha, N., Hain, T., Koroljova, A. et al. Oil shale ash based backfilling concrete – strength development, mineral transformations and leachability. Construction and Building Materials, 2016, 102, 620–630.
https://doi.org/10.1016/J.CONBUILDMAT.2015.10.197
42. Paaver, P., Järvik, O., Kirsimäe, K. Design of high volume CFBC fly ash based calcium sulphoaluminate type binder in mixtures with ordinary Portland cement. Materials, 2021, 14(19), 5798.
https://doi.org/10.3390/MA14195798
43. Reinik, J., Irha, N., Koroljova, A., Meriste, T. Use of oil shale ash in road construction: results of follow-up environmental monitoring. Environmental Monitoring and Assessment, 2018, 190, 59.
https://doi.org/10.1007/s10661-017-6421-5
44. Triisberg-Uljas, T., Vellak, K., Karofeld, E. Application of oil-shale ash and straw mulch promotes the revegetation of extracted peatlands. Ecological Engineering, 2018, 110, 99–106.
https://doi.org/10.1016/J.ECOLENG.2017.10.006
45. Reinik, J., Irha, N., Ots, K. Effect of Ca-rich granulated oil shale ash amendment on leaching properties of peat soil: experimental and field study. Eurasian Soil Science, 2021, 54, 1097–1106.
https://doi.org/10.1134/S1064229321070115
46. UNEP. General Technical Guidelines on the Environmentally Sound Management of Wastes Consisting of, Containing or Contaminated with Persistent Organic Pollutants. UNDP, 2023.
https://www.basel.int/Implementation/TechnicalMatters/DevelopmentofTechnicalGuidelines/TechnicalGuidelines/tabid/8025/Default.aspx(accessed 2025-03-19).
47. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. Low POP content.
https://www.basel.int/Implementation/POPsWastes/TechnicalGuidelines/LowPOPcontent/tabid/6360/Default.aspx (accessed 2025-01-29).
48. EU. Regulation (EU) 2019/1021 of the European Parliament and of the Council of 20 June 2019 on persistent organic pollutants. Official Journal of the European Union, 2019, L 169, 45–77.
49. EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union, 2019, L 170, 1–114.
50. Roots, O. Polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in oil shale and fly ash from oil shale-fired power plant in Estonia. Oil Shale, 2004, 21(4), 333–339.
https://doi.org/10.3176/oil.2004.4.06
51. Schleicher, O., Roots, O., Jensen, A. A., Herrmann, T., Tordik, A. Dioxin emission from two oil shale fired power plants in Estonia. Oil Shale, 2005, 22(4S), 563–570.
https://doi.org/10.3176/oil.2005.4s.15
52. Baqain, M., Yörük, C. R., Nešumajev, D., Järvik, O., Konist, A. Ash characteri-sation formed under different oxy-fuel circulating fluidized bed conditions. Fuel, 2023, 338, 127244.
https://doi.org/10.1016/J.FUEL.2022.127244
53. Ummik, M.-L., Tamm, K., Järvik, O., Nešumajev, D., Roosalu, K., Pihu, T. et al. Quantification of oil shale industry ash flows – their chemical and mineralogical composition. Oil Shale, 2025, 42(2), 129–166.
https://doi.org/10.3176/oil.2025.2.01
54. Konist, A., Järvik, O., Pikkor, H., Neshumayev, D., Pihu, T. Utilization of pyrolytic wastewater in oil shale fired CFBC boiler. Journal of Cleaner Production, 2019, 234, 487–493.
https://doi.org/10.1016/j.jclepro.2019.06.213
55. Ummik, M.-L., Järvik, O., Konist, A. Dioxin concentrations and congener distribution in biomass ash from small to large scale biomass combustion plants. Environmental Science and Pollution Research, 2024, 31, 58946–58956.
https://doi.org/10.1007/S11356-024-35141-5
56. EU. Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 589/2014. Official Journal of the European Union, 2017, L 92, 9–34.
57. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T. et al. Experience of Estonian oil shale combustion based on CFB technology at Narva power plants. Oil Shale, 2005, 22(4S), 381–397.
https://doi.org/10.3176/oil.2005.4s.02
58. Jo, J., Son, Y., Park, M.-K., Lee, J. Y., Chu, H., Ahn, Y. G. Statistical compari-son for assessing agreement between two mass spectrometric methods for the analysis of polychlorinated dibenzo-p-dioxins and furans (PCDDs/Fs) in contaminated soils. Chemosphere, 2024, 363, 142806.
https://doi.org/10.1016/J.CHEMOSPHERE.2024.142806
59. Ábalos, M., Cojocariu, C. I., Silcock, P., Roberts, D., Pemberthy, D. M., Sauló, J. et al. Meeting the European Commission performance criteria for the use of triple quadrupole GC-MS/MS as a confirmatory method for PCDD/Fs and dl-PCBs in food and feed samples. Analytical and Bioanalytical Chemistry, 2016, 408(13), 3511–3525.
https://doi.org/10.1007/s00216-016-9428-9
60. Kitamura, K., Takazawa, Y., Takei, Y., Zhou, X., Hashimoto, S., Choi, J.-W. et al. Development of a method for dioxin analysis of small serum samples with reduced risk of volatilization. Analytical Chemistry, 2005, 77(6), 1727–1733.
https://doi.org/10.1021/AC0486387
61. EU. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union, 2010, L 334, 17–119.
62. EU. Commission Implementing Decision (EU) 2021/2326 of 30 November 2021 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for large combustion plants. Official Journal of the European Union, 2021, L 469, 1–81.
63. Li, X.-D., Zhang, J., Yan, J.-H., Chen, T., Lu, S.-Y., Cen, K.-F. Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Journal of Hazardous Materials, 2006, 137(1), 57–61.
https://doi.org/10.1016/J.JHAZMAT.2006.01.068
64. Sun, J., Hu, J., Zhu, G., Zhang, D., Zhu, Y., Chen, Z. et al. PCDD/Fs distribution characteristics and health risk assessment in fly ash discharged from MSWIs in China. Ecotoxicology and Environmental Safety, 2017, 139, 83–88.
https://doi.org/10.1016/j.ecoenv.2017.01.015
65. Wang, M. S., Chen, S. J., Lai, Y. C., Huang, K. L., Chang-Chien, G. P. Characterization of persistent organic pollutants in ash collected from different facilities of a municipal solid waste incinerator. Aerosol and Air Quality Research, 2010, 10(4), 391–402.
https://doi.org/10.4209/aaqr.2010.01.0001
66. Lopes, H., Proença, S. Insights into PCDD/Fs and PAHs in biomass boilers envisaging risks of ash use as fertilizers. Applied Sciences, 2020, 10(14), 4951.
https://doi.org/10.3390/APP10144951
67. Pham, M. T. N., Hoang, A. Q., Nghiem, X. T., Tu, B. M., Dao, T. N., Vu, D. N. Residue concentrations and profiles of PCDD/Fs in ash samples from multiple thermal industrial processes in Vietnam: formation, emission levels, and risk assessment. Environmental Science and Pollution Research, 2019, 26(17), 17719–17730.
https://doi.org/10.1007/s11356-019-05015-2
68. Zhang, G., Hai, J., Ren, M., Zhang, S., Cheng, J., Yang, Z. Emission, mass balance, and distribution characteristics of PCDD/Fs and heavy metals during cocombustion of sewage sludge and coal in power plants. Environmental Science & Technology, 2013, 47(4), 2123–2130.
https://doi.org/10.1021/es304127k
69. Ma, W., Hoffmann, G., Schirmer, M., Chen, G., Rotter, V. S. Chlorine characterization and thermal behavior in MSW and RDF. Journal of Hazardous Materials, 2010, 178(1–3), 489–498.
https://doi.org/10.1016/J.JHAZMAT.2010.01.108
70. Yudovich, Y. E., Ketris, M. P. Chlorine in coal: a review. International Journal of Coal Geology, 2006, 67(1–2), 127–144.
https://doi.org/10.1016/J.COAL.2005.09.004
71. Spears, D. A. A review of chlorine and bromine in some United Kingdom coals. International Journal of Coal Geology, 2005, 64(3–4), 257–265.
https://doi.org/10.1016/J.COAL.2005.04.002
72. Pan, Y., Yang, L., Zhou, J., Liu, J., Qian, G., Ohtsuka, N. et al. Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere, 2013, 92(7), 765–771.
https://doi.org/10.1016/j.chemosphere.2013.04.003
73. Zhai, J., Burke, I. T., Stewart, D. I. Potential reuse options for biomass combustion ash as affected by the persistent organic pollutants (POPs) content. Journal of Hazardous Materials Advances, 2022, 5, 100038.
https://doi.org/10.1016/j.hazadv.2021.100038