ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2024): 1.4
Research article
Organic-rich shale in Lianggaoshan Formation: study on macroscopic and microscopic mechanical properties and mechanism of influencing factors; pp. 390–413
PDF | https://doi.org/10.3176/oil.2025.4.03

Authors
Yangbing Li, Weiqiang Hu, Litao Ma, Jianqi Chen, Zaizhen Liu, Di Cao, Panpan Li, Chenchen Li
Abstract

This study investigates the mechanical properties of organic-rich shale from the Lianggaoshan Formation using uniaxial and triaxial tests, nanoindentation, and atomic force microscopy. Key parameters such as elastic modulus and hardness are analyzed with NanoScope Analysis software. The results indicate that flat-laminated shale outperforms corrugated-laminated shale in terms of fracturing potential. As laminae increase, rock strength decreases, enhancing fracability, while thicker laminae hinder fracturing. The elastic modulus trend is clay minerals > calcite > quartz > pyrite, with Young’s modulus negatively correlated with mineral deformation.

References

1. Meng, Q. A., Lin, T. F., Zhang, J. Y., Liu, Z., Lu, J. C., Cheng, X. Y. In-situ accumulation process and reservoir characteristics of shale oil: a case study of Gulong shale oil in Songliao Basin. Petroleum Geology and Oilfield Development in Daqing, 2022, 41(3), 24–37.

2. Guo, Q. L., Bai, X. F., He, W. J., Fan, L. Y., Wang, J., Jiang, W. Y. et al. Shale oil resource assessment methods, parameter standards and typical case studies. China Petroleum Exploration, 2022, 27(5), 27–41. 

3. Wang, Q. R., Tao, S. Z., Guan, P. Progress in research and exploration & development of shale oil in continental basins in China. Natural Gas Geoscience, 2020, 31(3), 417–427. 
https://doi.org/10.11764/j.issn.1672-1926.2019.10.009

4. Fu, S. T., Jin, Z. J., Fu, J. H., Li, S. X., Yang, W. W. Transformation of under-standing from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development. Acta Petrolei Sinica, 2021, 42(5), 561–569. 
http://dx.doi.org/10.7623/syxb202105001  

5. Yan, B. H., Zhao, J. G., Xiao, Z. J., Zhong, Q. L., Ouyang, F., Wang, B. et al. Analysis of elastic properties and anisotropic rock physics modeling of Qianjiang Formation shale. Chinese Journal of Geophysics, 2024, 67(7), 2802–2819. 
https://doi.org/10.6038/cjg2022Q0724  

6. Rahman, M. J., Lebedev, M., Mondol, N. H. Nanoscale mechanical properties of organic-rich Draupne caprock shale using nano-indentation method, offshore Norway. International Journal of Greenhouse Gas Control, 2024, 132, 104073. 
https://doi.org/10.1016/j.ijggc.2024.104073

7. Zeng, Q., Wu, Y. K., Liu, Y. Q., Zhang, G. P. Determining the micro-fracture properties of Antrim gas shale by an improved micro-indentation method. Journal of Natural Gas Science and Engineering, 2019, 62, 224–235. 
https://doi.org/10.1016/j.jngse.2018.12.013  

8. Duan, Y. T., Zhu, C. C., Yang, B. C., Kong, R., Gu, L. J., Yu, L. Fracture propagation and failure mode characteristics of lamellar lacustrine shale under true triaxial compression conditions. Environmental Earth Sciences, 2024, 83(3), 96. 
https://doi.org/10.1007/s12665-023-11390-4  

9. Wu, S. T., Zhu, R. K., Luo, Z., Yang, Z., Jiang, X. H., Lin, M. J. et al. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China. China Petroleum Exploration, 2022, 27(5), 62–72.

10. Wei, J. G., Li, J. T., Zhang, A, Shang, D. M., Zhou, X. F., Niu, Y. T. Influence of shale bedding on development of microscale pores and fractures. Energy, 2023, 282, 128844. 
https://doi.org/10.1016/j.energy.2023.128844

11. Hua, G., Wu, S., Zhang, J., Liu, R., Guan, M., Cai, Y. et al. Laminar structure and reservoir quality of shales with high clay mineral content in the Qingshankou Formation, Songliao Basin. Energies, 2022, 15(17), 6132. 
http://dx.doi.org/10.3390/en15176132  

12. Xie, X. H., Deng, H. C., Hu, L. X., Li, Y., Mao, J. X., Liu, J. J. Assessing the effect of oriented structure characteristics of laminated shale on its mechanical behaviour with the aid of nano-indentation and FE-SEM techniques. International Journal of Rock Mechanics and Mining Sciences, 2024, 173, 105625. 
https://doi.org/10.1016/j.ijrmms.2023.105625

13. Yang, X. J., Wang, M., Bai, X. F., Wang, X., Ying, Y. S., Li, T. Y. et al. Reservoir space characteristics and exploration of shale oil mobility of the Jurassic Lianggaoshan Formation shale in the northeastern Sichuan Basin. Petroleum Science Bulletin, 2024, 9(2), 196–212.

14. He, W. Y., Bai, X. F., Meng, Q. A., Li, J. H., Zhang, D. Z., Wang, Y. Z. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin. Acta Petrolei Sinica, 2022, 43(7), 885–898.

15. Zhang, J. X., Wang, Y. Z., Cheng, X. Q., Zhu, S. M, Zhu, Y. P. Geological characteristics of shale reservoirs and exploration potential of shale oil and gas in Jurassic Lianggaoshan Formation of northeastern Sichuan Basin. Petroleum Geology and Development in Daqing, 2025, 44(2), 1–12.

16. Wang, D. J., Chen, C., Liu, Z. J., Yang, Z. J., Liu, M. M., Xie, J. T. Main controlling factors for oil and gas enrichment in Jurassic laminated shale in Fuxing area of Sichuan Basin. Petroleum Geology & Experiment, 2024, 46(2), 319–332. 
http://dx.doi.org/10.11781/sysydz202402319  

17. Zhao, Z. Y., Yan, C. L., Cheng, Y. F., Han, Z. Y., Xue, J. C. Study on the rock mechanical properties of Jurassic terrestrial reservoirs: a case study of the lower sub-section of the second section in Lianggaoshan Formation of the eastern Sichuan Basin. Progress in Geophysics, 2025, 40(1), 266–275.

18. Wang, X., Wang, M., Zhao, C., Yang, X., Jia, Y., Wu, R. et al. Reservoir characteristics and controlling factors of the middle–high maturity multiple lithofacies reservoirs of the Lianggaoshan Formation shale strata in the northeastern Sichuan basin, China. Marine and Petroleum Geology, 2024, 161, 106692. 
https://doi.org/10.1016/j.marpetgeo.2024.106692

19. Cheng, D. W., Zhang, Z. J., Hong, H. T., Zhang, S. M., Qin, C. Y., Yuan, X. J. et al. Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China. Petroleum Exploration and Development, 2023, 50(2), 293–305. 
https://doi.org/10.1016/S1876-3804(23)60388-X  

20. An, C., Liu, G. D., Sun, M. L., You, F. L., Wang, Z. X., Cao, Y. S. Development characteristics and classification of shale laminae in the Chang 7sub-member of the Triassic Yanchang Formation in the Ordos Basin. Petroleum Science Bulletin, 2023, 8(2), 125–140.

21. Huang, J. H., Li, X. L., Hu, G. Q., Zhang, W. Y., Zheng, L. G., Zhao, T., Jiang, C. X. Study on the Micro Macro Physical and Mechanical of Properties of Yangjialing Shale. China Mine Engineering, 2023, 52(6), 6–11.

22. Wang, J. F., Yang, C., Liu, Y. K., Xiong, Y. Q. Review on the application of nanoindentation to study of shale mechanical property. Oil & Gas Geology, 2022, 43(2), 477–488. 
https://doi.org/10.11743/ogg20220219  

23. Wang, K. Y., Du, G. Study on the pore structure characteristics of shale by atomic force microscope and energy spectrum-scanning electron microscope. Rock and Mineral Analysis, 2020, 39(6), 839–846. 
https://dx.doi.org/10.15898/j.cnki.11-2131/td.202004180053  

24. Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., Schieber, J., Demko, T. M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 2015, 85(3), 230–246. 
https://doi.org/10.2110/jsr.2015.11

25. O’Brien, N. R. Shale lamination and sedimentary processes. Geological Society, London, Special Publications, 1996, 116, 23–36. 
https://doi.org/10.1144/GSL.SP.1996.116.01.04  

26. Liu, Q., Yuan, X. J., Lin, S. H., Wang, L., Guo, H., Pan, S. Q. et al. The classification of lacustrine mudrock and research on its’ depositional environment. Acta Sedimentologica Sinica, 2014, 32(6), 1016–1025.

27. Xiong, Z. H., Cao, Y. C., Wang, G. M., Liang, C., Shi, X. M., Li, M. P. et al. Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks. Acta Petrolei Sinica, 2019, 40(1), 74–85. 
https://doi.org/10.7623/syxb201901006  

28. Rybacki, E., Reinicke, A., Meier, T., Makasi, M., Dresen, G. What controls the mechanical properties of shale rocks? – Part I: strength and Young’s modulus. Journal of Petroleum Science and Engineering, 2015, 135, 702–722. 
https://doi.org/10.1016/j.petrol.2015.10.028  

29. Zhang, Y. J., Chen, Z. P., Yu, C. Y., Dong, F., Qu, K. X., Shi, B. H. Geo-mechanical properties and influencing factors of organic-rich shale. Mud Logging Engineering, 2023, 34(4), 104–111. 

30. Xiaoqiong, W., Yi, Z., Youyu, W. et al. The influence of laminae on the mechanical properties of shale and its enlightenment to hydraulic fracturing. Journal of China University of Petroleum (Natural Science Edition), 2025, 49(1), 92–100.

31. Li, L., Huang, B., Huang, X., Wang, M., Li, X. Tensile and shear mechanical characteristics of Longmaxi shale laminae dependent on the mineral composition and morphology. Energies, 2020, 13(11), 2977. 
https://doi.org/10.3390/en13112977  

32. Ohmura, T., Wakeda, M. Pop-in phenomenon as a fundamental plasticity probed by nanoindentation technique. Materials, 2021, 14(8), 1879. 
https://doi.org/10.3390/ma14081879  

33. Xie, C. H., Deng, H. C., Hu, L. X., He, J. H., Li, R. X., Mao, J. X. et al. Investigation of the influence of shale bedding structure on its micro-macro mechanical behavior using nanoindentation and FE-SEM technology. Geological Review, 2024, 70(S1), 319–322. 

34. Timms, N. E., Healy, D., Reyes-Montes, J. M., Collins, D. S., Prior, D. J., Young, R. P. Effects of crystallographic anisotropy on fracture development and acoustic emission in quartz. Journal of Geophysical Research: Solid Earth, 2010, 115(B7). 
http://dx.doi.org/10.1029/2009JB006765  

35. Cao, F., He, J. H., Cao, H. X., Deng, H. C., Jiang, R., Wang, W. et al. Multi-scale rock mechanical parameters and quantitative assessment of brittleness in alkaline lacustrine shale reservoirs. Journal of Chengdu University of Technology (Natural Science Edition), 2025, 1–18. 
https://dx.doi.org/10.12474/cdlgzrkx.2024080301  

36. Zhao, Y. L., Luo, M. Y., Liu, L. F., Wu, J. F., Chen, M., Zhang, L. H. Molecular dynamics simulations of shale gas transport in rough nanopores. Journal of Petroleum Science and Engineering, 2022, 217, 110884. 
https://doi.org/10.1016/j.petrol.2022.110884

37. Huang, B. X., Li, L. H., Tan, Y. F., Hu, R. L., Li, X. Investigating the meso-mechanical anisotropy and fracture surface roughness of continental shale. Journal of Geophysical Research: Solid Earth, 2020, 125(8), e2019JB017828. 
https://doi.org/10.1029/2019JB017828  

38. Yu, H., Shen, R., Guo, H. K., Wang, G., Shao, G., Shang, Z. Characterization of pore structure of shale by atomic force microscopy. Science and Technology and Engineering, 2022, 22(36), 16016–16023.

39. Rashid, F., Singh, D. N. Discussion on the paper “Thermal effects promotes non-Darcian flow in heated rock fractures” by Jie Tan, Guan Rong, Changdog Li, Jia-Qing Zhou, and Huiming Tang 2023. Rock Mechanics and Rock Engineering, 2024, 57, 2289–2291. 
https://doi.org/10.1007/s00603-023-03641-4  

40. Zhang, M. Z., Xu, J. J., Jiang, Q., Tang, H. X., Wang, Z. Z., Zhang, Y. H. et al. Cross-scale characterization of the Young’s modulus of slate using atomic force microscopy. Rock and Soil Mechanics, 2022, 43(S1), 245–257.

41. Tang, X. Study on nano-micro mechanical properties of coal rock: taking Pocahontas coal rock as an example. Coal Science and Technology, 2020, 48(2), 220–229.

42. Xu, J. J., Tang, X. H., Wang, Z. Z., Feng, Y. F., Bian, K. Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations. Engineering Geology, 2020, 277, 105801. 
https://doi.org/10.1016/j.enggeo.2020.105801  

43. Cai, X., Xia, W., Liu, H. R., Liu, L., Lu, C. X., Liu, Y. X. Discussion on the innovative application of atomic force microscope in the microscopic characterization of shale. China Plant Engineering, 2021, 43(S1), 229–232.

44. Yang, L., Yang, D., He, M. C. Quantitative study on distribution range of interface transition zone in continental shale beddings based on nano scratch. Rock and Soil Mechanics, 2025, 46(2), 353–367.

45. Moro, D., Ulian, G., Valdrè, G. Nanoscale cross-correlated AFM, Kelvin probe, elastic modulus and quantum mechanics investigation of clay mineral surfaces: the case of chlorite. Applied Clay Science, 2016, 131, 175–181. 
https://doi.org/10.1016/j.clay.2015.11.023

46. Iferobia, C. C., Ahmad, M. Nanoindentation application in geomechanics analysis of shale under high-temperature treatment/thermal fracturing conditions. Bulletin of Engineering Geology and the Environment, 2023, 82(12), 453. 
https://doi.org/10.1007/s10064-023-03460-5

Back to Issue