This study analyzed 25 Chang 7 shale samples from the Ordos Basin, examining geochemical properties, mineral composition, nitrogen adsorption, mercury injection capillary pressure, and NMR T2 and T1–T2 spectra. The results indicate that the shale primarily contains type II1 and II2 kerogen, with mature thermal maturity. Organic-rich shales are enriched in clay and felsic minerals, while organic-lean shales show more dispersed mineral compositions. Nitrogen adsorption classified the shale into four types, with type H2 showing the best properties. The study developed pore size conversion models and clarified the occurrence characteristics of hydrogen nucleus components, providing valuable insights for NMR evaluation of shale reservoirs globally.
1. Montgomery, S. L., Jarvie, D. M., Bowker, K. A., Pollastro, R. M. Mississippian Barnett Shale, Fort Worth basin, north-central texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bull., 2005, 89(2), 155–175.
https://doi.org/10.1306/09170404042
2. Zou, C. N., Zhai, G. M., Zhang, G. Y., Wang, H. J., Zhang, G. S., Li, J. Z. et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Pet. Exp. Dev., 2015, 42(1), 14–28.
https://doi.org/10.1016/s1876-3804(15)60002-7
3. Ma, Y. S., Cai, X. Y., Zhao, P. R. China’s shale gas exploration and development: understanding and practice. Pet. Explor. Dev., 2018, 45(4), 589–603.
https://doi.org/10.1016/s1876-3804(18)30065-x
4. Mousa, D. A., Abuhagaza, A. A., Mahdi, A. Q., Gentzis, T., Makled, W. A. Assessment of the hydrocarbon potential in the black shales of the Jurassic Khatatba Formation and generated hydrocarbons, North Western Desert, Egypt: depositional mechanism of organic rich rocks related to syn-rift differential subsidence. Mar. Pet. Geol., 2024, 167, 106975.
https://doi.org/10.1016/j.marpetgeo.2024.106975
5. Tan, M. J., Mao, K. Y., Song, X. D., Yang, X., Xu, J. J. NMR petrophysical interpretation method of gas shale based on core NMR experiment. J. Pet. Sci. Eng., 2015, 136, 100–111.
https://doi.org/10.1016/j.petrol.2015.11.007
6. Li, J. B., Lu, S. F., Chen, G. H., Wang, M., Tian, S. S., Guo, Z. Q. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals. Mar. Pet. Geol., 2019, 102, 535–543.
https://doi.org/10.1016/j.marpetgeo.2019.01.013
7. Liu, J. L., Xie, R. H., Guo, J. F. Numerical investigation of T2*-based and T2-based petrophysical parameters frequency-dependent in shale oil. Energy, 2024, 313, 133788.
https://doi.org/10.1016/j.energy.2024.133788
8. Zamiri, M. S., Guo, J. F., Marica, F., Romero-Zerón, L., Balcom, B. J. Charac-terization of kerogen in shale core plugs using T2*-based magnetic resonance methods. Fuel, 2022, 324(A), 124573.
https://doi.org/10.1016/j.fuel.2022.124573
9. Fajt, M., Mazur-Rosmus, W., Stefańska, A., Kochman, A., Krzyżak, A. T. Chert outcrops differentiation by means of low-field NMR relaxometry. Sci. Rep., 2024, 14(1), 25280.
https://doi.org/10.1038/s41598-024-75945-6
10. Shelyapina, M. G. NMR relaxation to probe zeolites: mobility of adsorbed molecules, surface acidity, pore size distribution and connectivity. Molecules, 2024, 29(22), 5432.
https://doi.org/10.3390/molecules29225432
11. Liu, Y., Yao, Y. B., Liu, D. M., Zheng, S. J., Sun, G. X., Chang, Y. H. Shale pore size classification: an NMR fluid typing method. Mar. Pet. Geol., 2018, 96, 591–601.
https://doi.org/10.1016/j.marpetgeo.2018.05.014
12. Maxey, D., Afari, S., Jabbari, H. NMR relaxometry insights into pore-level sweep efficiency for methane infusion IOR in unconventional reservoirs. Geoenergy Sci. Eng., 2025, 245, 213527.
https://doi.org/10.1016/j.geoen.2024.213527
13. Zhang, P. F., Lu, S. F., Li, J. Q. Characterization of pore size distributions of shale oil reservoirs: a case study from Dongying sag, Bohai Bay basin, China. Mar. Pet. Geol., 2019, 100, 297–308.
https://doi.org/10.1016/j.marpetgeo.2018.11.024
14. Zhang, P. F., Lu, S. F., Li, J. Q. Characterization of pore size distributions of shale oil reservoirs: a case study from Dongying sag, Bohai Bay basin, China. Mar. Pet. Geol., 2019, 100, 297–308.
https://doi.org/10.1016/j.marpetgeo.2018.11.024
15. Liu, K. Q., Zhang, Z. C., Ostadhassan, M. The application of Gaussian distribution deconvolution method to separate the overlapping signals in the 2D NMR map. Pet. Sci., 2023, 20(3), 1513–1520.
https://doi.org/10.1016/j.petsci.2022.11.006
16. Silletta, E. V., Delfa, G. M., Velasco, M. I., Donadelli, J. A., Monti, G. A., Smal, C. et al. Quantification of imbibed heptane in shale rocks determined by edited T1–T2 nuclear magnetic resonance relaxation experiments at high magnetic field. Energy Fuels, 2022, 36(18), 10794–10802.
https://doi.org/10.1021/acs.energyfuels.2c01554
17. Bratland, A. M. L., Pavlin, T., Djurhuus, K., Seland, J. G. Characterising oil and water in porous media using correlations between internal magnetic gradient and transverse relaxation time. J. Magn. Reson., 2020, 310, 106649.
https://doi.org/10.1016/j.jmr.2019.106649
18. Zhou, Y. Q., You, L. Z., Zi, H., Lan, Y. Y., Cui, Y. L., Xu, J. F. et al. Determination of pore size distribution in tight gas sandstones based on Bayesian regularization neural network with MICP, NMR and petrophysical logs. J. Nat. Gas Sci. Eng., 2022, 100, 104468.
https://doi.org/10.1016/j.jngse.2022.104468
19. Fajt, M., Fheed, A., Machowski, G., Sowiżdżał, A., Krzyżak, A. T. Modified low-field NMR method for improved pore space analysis in tight Fe-bearing siliciclastic and extrusive rocks. Lithosphere, 2024, 3, 157.
https://doi.org/10.2113/2024/lithosphere_2024_157
20. Bardenhagen, I., Dreher, W., Fenske, D., Wittstock, A., Bäumer, M. Fluid distribution and pore wettability of monolithic carbon xerogels measured by 1H NMR relaxation. Carbon, 2014, 68, 542–552.
https://doi.org/10.1016/j.carbon.2013.11.033
21. Wang, Y., Cheng, H. F., Hu, Q. H., Liu, L. F., Jia, L. B., Gao, S. S. et al. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng.,2022, 208(A), 109313.
https://doi.org/10.1016/j.petrol.2021.109313
22. AlKharraa, H., Wolf, K.-H., AlQuraishi, A., Al Abdrabalnabi, R., Mahmoud, M., Zitha, P. Microscopic CO2injection in tight rocks: implications for enhanced oil recovery and carbon geo-storage. Energy Fuels 2023, 37(23), 19039–19052.
https://doi.org/10.1021/acs.energyfuels.3c03403
23. Li, J. B., Jiang, C. Q., Wang, M., Lu, S. F., Chen, Z. H., Chen, G. H. et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1–T2 maps. Mar. Pet. Geol., 2020, 116, 104311.
https://doi.org/10.1016/j.marpetgeo.2020.104311
24. Guo, R. L., Li, S. X., Zhou, X. P., Guo, Q. H., Li, S. T., Chen, J. L. et al. Multi-isothermal stage pyrolysis of the Chang 73 shale oil reservoirs, Ordos Basin: implications for oil occurrence states and in situ conversion exploitation. A ACS Earth Space Chem., 2022, 6(4), 1143–1162.
https://doi.org/10.1021/acsearthspacechem.2c00057
25. Guo, R. L., Yu, G. M., Wen, K. F., Liu, F., Zhao, J. Z., Bai, Y. B. et al. Pore characteristics and its impact on shale oil occurrence of lacustrine shale from Chang 7, Ordos Basin. Pet. Sci. Technol., 2024, 1–20.
https://doi.org/10.1080/10916466.2024.2391481
26. Wang, Y., Liu, L. F., Cheng, H. F. Pore structure of Triassic Yanchang mud-stone, Ordos Basin: insights into the impact of solvent extraction on porosity in lacustrine mudstone within the oil window. J. Pet. Sci. Eng., 2020, 195, 107944.
https://doi.org/10.1016/j.petrol.2020.107944
27. Yang, Y., Li, W., Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: a multicycle cratonic basin in central China. AAPG Bull., 2005, 89(2), 255–269.
https://doi.org/10.1306/10070404027
28. Guo, R., Xie, Q., Qu, X., Chu, M., Li, S., Ma, D. et al. Fractal characteristics of pore-throat structure and permeability estimation of tight sandstone reservoirs: a case study of Chang 7 of the Upper Triassic Yanchang Formation in Long-dong area, Ordos Basin, China. J. Pet. Sci. Eng., 2019, 184, 106555.
https://doi.org/10.1016/j.petrol.2019.106555
29. Xie, X. Y. Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications. Sediment. Geol., 2016, 335, 1–16.
https://doi.org/10.1016/j.sedgeo.2015.12.016
30. Zhang, P. F., Lu, S. F., Li, J. Q., Xue, H. T., Li, W. H., Zhang, P. Characterization of shale pore system: a case study of Paleogene Xin’gouzui Formation in the Jianghan basin, China. Mar. Pet. Geol., 2019, 100, 297–308.
https://doi.org/10.1016/j.marpetgeo.2018.11.024
31. Zhang, P. F.. Lu, S. F., Li, J. Q., Zhang, J., Xue, H. T., Chen, C. Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characteri-zation of the pore size distribution of lacustrine shale: a case study on the Dongying Depression, Bohai Bay Basin, China. Energy Fuels, 2017, 31(9), 9232–9239.
https://doi.org/10.1021/acs.energyfuels.7b01625
32. Mukhopadhyay, P. K., Wade, J. A., Kruge, M. A. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., 1995,22(1), 85–104.
https://doi.org/10.1016/0146-6380(94)00061-1
33. Zhang, P. F., Yin, Y. J., Lu, S. F., Li, J. Q., Chang, X. C., Zhang, J. J. et al. In-sights into pore structures and multifractal characteristics of shale oil reservoirs: a case study from Dongying Sag, Bohai Bay Basin, China. Energy Fuels, 2022, 36(15), 8224–8237.
https://doi.org/10.1021/acs.energyfuels.2c01763
34. Wang, L., Li, W., Liu, Q., Wang, D., Zhang, M., Bai, B. Lithofacies characteristics and sedimentary environment of Chang 7 black shale in the Yanchang Formation, Ordos Basin. J. Palaeogeogr., 2023, 25(3), 598–613.
35. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87, 9–10.
https://dx.doi.org/10.1515/pac-2014-1117
36. Rouquerol, J., Avnir, D., Everett, D. H., Fairbridge, C., Haynes, M., Pernicone, N. et al. Guidelines for the characterization of porous solids. In: Characterization of Porous Solids III (Rodríguez-Reinoso, F., Rouquerol, J., Unger, K. K., Sing, K., eds). Elsevier, 1994, 1–9.
https://doi.org/10.1016/S0167-2991(08)63059-1
37. Yan, P. Y., Guo, J. F., Marica, F., Balcom, B. J. Pore size distribution measurement with magnetic resonance T2distributions outside the fast diffusion regime. Geoenergy Sci. Eng., 2023, 230, 212226.
https://doi.org/10.1016/j.geoen.2023.212226
38. Fleury, M., Romero-Sarmiento, M. Characterization of shales using T1–T2 NMR maps. J. Pet. Sci. Eng., 2016, 137, 55–62.
https://doi.org/10.1016/j.petrol.2015.11.006