ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Variation characteristics of biomarkers in shale products in thermal simulation: a case study of the Shahejie Formation in the Bohai Bay Basin; pp. 291–312
PDF | https://doi.org/10.3176/oil.2025.3.03

Authors
Jiayi Wu, Zhiqiang Pan, Daxiang He, Kai Yan, Fangyihang Xiang, Bocai Li
Abstract

This study focuses on shale samples from the medium-deep lacustrine shale in the third member of the Shahejie Formation, Bohai Bay Basin. Thermal simulation experiments were conducted using gold tubes to study hydrocarbon generation. The results indicate that shale biomarkers vary at different thermal evolution stages and provide distinct geochemical indications. Compared with saturated hydrocarbons, aromatic hydrocarbon parameters can better indicate the maturity of high- to overmature crude oil. The correlation between the parameters of aromatic hydrocarbon -biomarkers and the maturity of crude oil is as follows: methylphenanthrene parameters (MPI1), 4-MDBT/1-MDBT, perene/benzo[e]pyrene, methylphenanthrene ratio (MPR), benzofluoranthene/benzo[e]pyrene, trimethylnaphthalene ratio (TMNr), and tetramethylnaphthalene ratio (TeMNr). The variation in several parameters indicates that 345–445 °C is thepeak oil generation window (the corresponding Ro is about 0.6–1.3%), during which hydrocarbon expulsion efficiency increased greatly, and residual hydrocarbons accumulate -massively. This research provides a basis for evaluating shale oil and gas resources. Shale with a vitrinite reflectance of 0.6–1.3% is the most beneficial for exploration and development. 

References

1. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., Espitalie, J. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Org. Geochem., 1997, 26(5–6), 321–339. 
https://doi.org/10.1016/S0146-6380(97)00014-4

2. Connan, J. Time-temperature relation in oil genesis: geologic notes. AAPG Bull., 1974, 58(12), 2516–2521. 
https://doi.org/10.1306/83d91beb-16c7-11d7-8645000102c1865d

3. Lopatian, N. Temperature and geologic time as factors in coalification. Izv. Akad. Nauk SSSR Ser. Geol., 1971, 3, 95–106.

4. Wu, L. L., Liao, Y. H., Fang, Y. X., Geng, A. S. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities. Chin. Sci. Bull., 2012, 58, 373–383. 
https://doi.org/10.1007/s11434-012-5377-7

5. Peng, W. L., Hu, G. Y., Liu, Q. Y., Jia, N., Fang, C. C., Gong, D. Y. et al. Research status on thermal simulation experiment and several issues of concern. J. Nat. Gas Geosci., 2018, 3(5), 283–293. 
https://doi.org/10.1016/j.jnggs.2018.11.006

6. Ma, Z. L., Zheng, L. J., Li, Z. M. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity. Acta Sedimentol. Sin., 2012, 30(5), 955–963. 
https://doi.org/10.14027/j.cnki.cjxb.2012.05.006

7. Li, Y. Y., Zhou, S. X., Li, J., Sun, Z. X., Pang, W. J. Research progress of hydrocarbon generation kinetics based on gold tube. J. Nat. Gas Geosci., 2024, 9(1), 53–67. 
https://doi.org/10.1016/j.jnggs.2023.11.005

8. Hu, J. J., Tang, Y. J., He, D. X., Fu, N., Li, M. J. Comparison and exploration of hydrocarbon expulsion patterns of different types of source rocks. J. Geomech., 2020, 26(6), 941–951. 
https://doi.org/10.12090/j.issn.1006-6616.2020.26.06.075

9. Yang, M. H., Zuo, Y. H., Yan, K. N., Zhou, Y. S., Zhang, Y. X., Zhang, C. F. Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics: a case study of the Dongpu Depression, Bohai Bay Basin, China. Pet. Sci., 2022, 19(2), 472–485. 
https://doi.org/10.1016/j.petsci.2021.10.009

10. Jiang, F., Zhang, Y. L., Du, J. G. Research progress on thermal simulation experiments of oil and gas generation.Adv. Earth Sci., 1996, 11(5), 453–459. 
https://doi.org/10.3321/j.issn:1001-8166.1996.05.005

11. Cheng, H. Y., Li, A. L., Gong, J. M. Analysis of evaluation parameters of terrestrial source rocks. Marine Geol. Lett., 2008, 24(2), 6–10. 
https://doi.org/10.16028/j.1009-2722.2008.02.007

12. Huang, Y. Y., Liao, Y. H., Xu, T., Wang, Y. P., Peng, P. A. Characteristics of light hydrocarbons under the superimposed influence of biodegradation and subsequent thermal maturation. Org. Geochem., 2023, 177, 104557. 
https://doi.org/10.1016/j.orggeochem.2023.104557

13. Huang, H. P., Bowler, B. F. J., Oldenburg, T. B. P., Larter, S. R. The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe basin, NE China. Org. Geochem., 2004, 35(11–12), 1619–1634. 
https://doi.org/10.1016/j.orggeochem.2004.05.009

14. Zhao, W., Guo, X. W., Ho, S. Analysis on validity of maturity parameters of biomarkers: a case study from source rocks in Yitong Basin. J. Xi’an Shiyou Univ. Nat. Sci. Ed., 2016, 31(6), 23–31. 
https://doi.org/10.3969/j.issn.1673-064X.2016.06.004

15. Pepper, A. S., Corvi, P. J. Simple kinetic models of petroleum formation. Part III: modelling an open system. Mar. Pet. Geol., 1995, 12(4), 417–452. 
https://doi.org/10.1016/0264-8172(95)96904-5

16. Chang, H. P., Xu, J. Y., Xu, Y. H., Liu, Y., Li, W., Zhong, M. Y. et al. Characteristics of hydrocarbon generation and expulsion in different types of lacustrine source rocks based on thermo-compression simulation experiments. Nat. Gas Geosci., 2024, 35(12), 2240–2252. 
http://dx.doi.org/10.11764/j.issn.1672-1926.2024.06.003

17. Sun, Y., Wang, Y. P., Liu, J. Z., Shi, S. Y., He, Z. H. Comparison of expulsion efficiency and pore evolution between shale whole rock and powder samples in semi-closed thermal simulation experiments. Bull. Mineral. Pet. Geochem., 2023, 42(6), 1269–1278. 
https://doi.org/10.19658/j.issn.1007-2802.2023.42.055

18. Pan, Y., Fan, X. K., Yang, S. C., Hu, Z. Y., Yan, Y. L. Oil shale pyrolysis and electric heating in situ mining technology improvements. Oil Shale, 2024, 41(4), 257–272. 
https://doi.org/10.3176/oil.2024.4.02

19. Chen, B., Cai, J. T., Chen, X. R., Wu, D., Pan, Y. A review on oil shale in-situ mining technologies: opportunities and challenges. Oil Shale, 2024, 41(1), 1–25. 
https://doi.org/10.3176/oil.2024.1.01

20. He, W. T., Sun, Y. H., Guo, W., Shan, X. L. Controlling the in-situ conversion process of oil shale via geochemical methods: a case study on the Fuyu oil shale, China. Fuel Process. Technol., 2021, 219, 106876. 
https://doi.org/10.1016/j.fuproc.2021.106876

21. Tong, X. G., Zhang, G. Y., Wang, Z. M., Wen, Z. X., Tian, Z. J., Wang, H. J. et al. Distribution and potential of global oil and gas resources. Pet. Explor. Dev., 2018, 45(4), 727–736. 
https://doi.org/10.1016/S1876-3804(18)30081-8

22. Li, B. C., Pan, Z. Q., He, D. X., Wang, Y. F., Li, J., Tang, Y. J. Biomarker and carbon isotope of individual n-alkane as keys to determine the degree of gas invasion of crude oil: a case study of Tazhong area, Tarim Basin. Nat. Gas Geosci., 2025, 36(4), 665–676. 
https://doi.org/10.11764/j.issn.1672-1926.2024.11.006

23. Wang, J. C., Chen, J., Jia, W. L., Zhan, Z. W., Peng, P. A. The effect of oil expulsion on potential, composition, and related geochemical indicators of light oil/condensate from deep source rocks: results from a thermalsimulation on type I kerogen. Geochimica, 2025-04-15. 
https://doi.org/10.19700/j.0379-1726.2024.01.106

24. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide. Cambridge University Press, Cambridge, 2005.
https://doi.org/10.1017/CBO9781107326040

25. Ogbesejana, A. B., Liu, B., Gao, S., Akinyemi, S. A., Bello, O. M., Song, Y. Applying biomarkers as paleoenvironmental indicators to reveal the organic matter enrichment of shale during deep energy exploration: a review. RSC Adv., 2023, 13(36), 25635–25659. 
https://doi.org/10.1039/D3RA04435A

26. Farrimond, P., Taylor, A., Telnæs, N. Biomarker maturity parameters: the role of generation and thermal degradation. Org. Geochem., 1998, 29(5–7), 1181–1197. 
https://doi.org/10.1016/S0146-6380(98)00079-5

27. Huang, L. S., Dong, R. J., Liu, Y. X., Xu, Y. H., Yan, G., Li, Y. Discussion on the applicability of maturity parameters of naphthalene and phenanthrene series compounds: insights from the thermocompression simulation experiment of hydrocarbon generation and expulsion. 2022, 42(1), 122–134. 
https://doi.org/10.19658/j.issn.1007-2802.2022.41.063

28. Lin, J. W., Xie, X. M., Wen, Z. G., Wu, F. T., Xu, J., Ma, Z. L. et al. A com-parative study on the geochemical characteristics of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale I: fraction and isotopic compositions. Pet. Geol. Exp., 2022, 44(1), 150–159. 
https://doi.org/10.11781/sysydz202201150

29. Wang, C. J., Fu, J. M., Sheng, G. Y., Zhang, Z. N., Xia, Y. Q., Cheng, X. H. Laboratory thermal simulation of liquid hydrocarbon generation and evolution of Jurassic coals from the Turpan-Hami Basin. Acta Geol. Sin., 1998, 72(3), 276–284. 
https://doi.org/10.19762/j.cnki.dizhixuebao.1998.03.009

30. Wang, D., Lin, J. H., Lin, J. Z., Wang, W. D., Li, S. Biodegradation of petroleum hydrocarbons by Bacillus subtilisBL-27, a strain with weak hydrophobi-city. Molecules, 2019, 24(17), 3021–3036. 
https://doi.org/10.3390/molecules24173021

31. Pu, X. G., Liu, S., Hao, S. S. The biomarkers’ characteristics and significance of saturated hydrocarbon derived from Gloeocapsomorpha Prisca laboratory simulation by hydrous pyrolysis. Bull. Mineral. Petrol. Geochem., 1998, 17(2), 35–39. 

32. Cheng, P., Xiao, X. M., Tian, H., Zhou, Q., Chen, J., Pan, L. Effects of maturity on the Pr/Ph ratio of the soluble organic matters in the terrestrial source rocks. Acta Sedimentol. Sin., 2014, 32(1), 182–188. 
https://doi.org/10.14027/j.cnki.cjxb.2014.01.021

33. Radke, M., Schaefer, R. G., Leythaeuser, D., Teichmüller, M. Composition of soluble organic matter in coals: relation to rank and liptinite fluorescence. Geochim. Cosmochim. Acta, 1980, 44(11), 1787–1800. 
https://doi.org/10.1016/0016-7037(80)90228-8

34. Koopmans, M. P., Rijpstra, W. I. C., Klapwijk, M. M., de Leeuw, J. W., Lewan, M. D., Damsté, J. S. S. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Org. Geochem., 1999, 30(9), 1089–1104. 
https://doi.org/10.1016/S0146-6380(99)00088-1

35. Ishiwatari, R., Ishiwatari, M. Insights on the origin of pristane and phytane in sediments and oils from laboratory heating experiments. Geochem. Soc. Spec. Publ., 2004, 9, 85–96. 
https://doi.org/10.1016/S1873-9881(04)80009-9

36. Chen, Z. H., Zha, M., Jin, Q., Ren, Y. J. Distribution of sterane maturity parameters in a lacustrine basin and their control factors: a case study from the Dongying Sag, East China. Pet. Sci., 2011, 8, 290–301. 
https://doi.org/10.1007/s12182-011-0146-9

37. Zhou, C. X., Yu, S., Zhang, H. Z., Xiao, Z. Y., Pan, C. C. Concentrations and thermal stabilities of steranes and terpanes in crude oils from the cratonic regions of Tarim Basin. Geochimica, 2023, 52(2), 158–171. 
https://doi.org/10.19700/j.0379-1726.2023.02.003

38. Zhang, Y. X., Liu, H. Y., Gong, W. F., Dong, H. GC-MS analysis of aromatic hydrocarbon and its application in petroleum geology in north area of Dongpu Depression. Fault-Bl. Oil Gas Field, 2012, 19(6), 727–731. 

39. Chen, Z. J., Zhang, Y. X., Wang, Y. C., Wang, X., Ge, H. X., Gao, Z. L. et al. Quantitative assessment of source rock maturity with multiple aromatic parameters: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin. Pet. Geol. Exp., 2022, 44(1), 139–149. 
https://doi.org/10.11781/sysydz202201139

40. Liu, Y. Z., Gang, W. Z., Chen, G., Sun, J. B., Jiang, C. Geochemical characteristics of aromatic hydrocarbons of Chang7 source rocks from the Yanchi-Dingbian Area, Ordos Basin. Acta Sedimentol. Sin., 2018, 36(4), 818–828. 
https://doi.org/10.14027/j.issn.1000-0550.2018.093

41. George, S. C., Ahmed, M. Use of aromatic compound distributions to evaluate organic maturity of the Proterozoic middle Velkerri Formation, McArthur Basin, Australia. In: The Sedimentary Basins of Western Australia 3 (Keep, M., Moss, S., eds). Petroleum Exploration Society of Australia, Perth, 2002. 

42. Chakhmakhchev, A., Suzuki, M., Takayama, K. Distribution of alkylated di-benzo-thiophenes in petroleum as a tool for maturity assessments. Org. Geochem., 1997, 26(7–8), 483–489. 
https://doi.org/10.1016/S0146-6380(97)00022-3

43. Li, M. J., Wang, T. G. The generating mechanism of methylated naphthalene series in crude oils and the application of their maturity parameters. Pet. Geol. Exp., 2005, 27(6), 606–611. 
https://doi.org/10.11781/sysydz200506606

44. van Aarssen, B. G. K., Bastow, T. P., Alexander, R., Kagi, R. I. Distributions of methylated naphthalenes in crude oils: indicators of maturity, biodegradation, and mixing. Org. Geochem., 1999, 30(10), 1213–1227. 
https://doi.org/10.1016/S0146-6380(99)00097-2

45. Yang, S. B., Lai, H. F., Li, M. J., Yang, L., Wang, H. The relationship between methylphenanthrene index, methylphenanthrene ratio, and maturity in lacustrine source rocks. J. Yangtze Univ. Nat. Sci. Ed., 2018, 15(19), 12–17, 85–86. 
https://doi.org/10.16772/j.cnki.1673-1409.2018.19.003

46. Chen, Y., Bao, J. P., Liu, Z. Q., Wang, L. Q., Deng, K., Wang, Y. P. et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: take the northern margin of Qaidam Basin as an example. Pet. Explor. Dev., 2010, 37(4), 508–512. 

47. Radke, M., Welte, D. H., Willsch, H. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta, 1982, 46(1), 1–10. 
https://doi.org/10.1016/0016-7037(82)90285-X

48. Faiz, M., Altmann, C., Baruch, E., Côté, A., Gong, S., Schinteie, R. et al. Organic matter composition and thermal maturity evaluation of Mesoproterozoic source rocks in the Beetaloo Sub-Basin, Australia. Org. Geochem., 2022, 174, 104513. 
https://doi.org/10.1016/j.orggeochem.2022.104513

49. Wu, J., Qi, W., Luo, Q. Y., Chen, Q., Shi, S. B., Li, M. J. et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications. Pet. Geol. Exp., 2019, 41(2), 260–267. 
https://doi.org/10.11781/sysydz201902260

50. Srinivasan, P., Jacobi, D., Arguello, E. M. E., Atwah, I., Karg, H., Azzouni, A. Thermal maturity calculation in Type II-S source rocks using the alkyl dibenzothiophenes. Org. Geochem., 2023, 185, 104676. 
https://doi.org/10.1016/j.orggeochem.2023.104676

51. Chen, Z. L., Li, S. J., Wang, Z. A study on maturity indicators of some aromatics in low-midmature thermal evolution zones. Acta Sedimentol. Sinica, 1997, 15(2), 192–197. 

52. Guo, S. B., Mao, W. J., Ma, X. Thermal simulation experiment study of the hydrocarbon generation characteristics of low maturity shale. Earth Sci. Front., 2017, 24(6), 365–369. 
https://doi.org/10.13745/j.esf.yx.2016-12-34

53. Kaneki, S., Noda, H. On approximations of EASY%Ro solutions to estimate maximum temperature from vitrinite reflectance. J. Geol. Soc. Japan, 2020, 126(11), 655–661. 
https://doi.org/10.5575/geosoc.2020.0035

54. Ma, W. J., Luo, X., Tao, S. Z., Liu, J. Z., Guan, P. Modified pyrolysis experiments and indexes to re-evaluate petroleum expulsion efficiency and productive potential of the Chang 7 shale, Ordos Basin, China. J. Pet. Sci. Eng., 2020, 186, 106710. 
https://doi.org/10.1016/j.petrol.2019.106710

55. Chen, Z. J., Wen, Z. G., Zhang, C. M., He, Y. H., Gao, Y. W., Bai, X. Y. et al. A study on the applicability of aromatic parameters in the maturity evaluation of lacustrine source rocks and oils based on pyrolysis simulation experiments. ACS Omega, 2023, 8(30), 27674–27687. 
https://doi.org/10.1021/acsomega.3c03558

56. Wang, C. Y., Du, J. G., Duan, Y., Zhou, X. C., Zheng, C. Y., Wu, B. X. Geochemical characteristics and significance of aromatic hydrocarbon in oil and gas. Xinjiang Pet. Geol., 2007, 28(01), 29–32. 
https://doi.org/10.3969/j.issn.1001-3873.2007.01.007

57. Chen, J. P., Sun, Y. G., Zhong, N. N., Huang, Z. K., Deng, C. P., Xie, L. J. et al. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame. Acta Geol. Sin., 2014, 88(11), 2005–2032. 
https://doi.org/10.19762/j.cnki.dizhixuebao.2014.11.001

58. Li, J., Ma, W., Wang, Y. F., Wang, D. L., Xie, Z. Y., Li, Z. S. et al. Modeling of the whole hydrocarbon-generating process of sapropelic source rock. Pet. Explor. Dev., 2018, 45(3), 445–454. 
https://doi.org/10.1016/S1876-3804(18)30051-X

Back to Issue