In Estonian oil shale power plants, ash is transported to disposal sites using a wet transport method. Due to regional climatic conditions, where annual precipitation exceeds evaporation, part of the recirculated ash transport water has to be periodically discharged into natural surface waters. This discharge practice raises concerns about the potential environmental impact of the discharged water. This paper investigates the leaching behavior of several trace elements from oil shale ash, demolition wood ash, and their mixtures, with a focus on chromium. In particular, the occurrence, mobility, and oxidation state of chromium in the leachate are considered using the example of the mentioned ashes. The possible effect of ash content, influenced by fuel type and the liquid-to-solid (L/S) ratio, on trace element concentrations in the discharged water was studied. In leaching tests with 100% oil shale ash, the chromium concentration in the circulating water increases only slightly when circulating water from the oil shale ash field is used as the leaching medium. On the one hand, the amount of chromium and other trace elements leached from oil shale ash depends on the L/S ratio. At the same time, it is known from the literature that oil shale ash is also capable of binding chromium. The release and concentration of chromium in the leachate increase significantly as the proportion of waste wood ash rises, compared to tests using 100% oil shale ash. Consequently, the concentration of chromium in surface water, depending on the specific ratio of oil shale to waste wood used in co-combustion, can easily exceed the nationally permitted limit value.
1. Attarat Oil Shale Fired Power Plant.
https://attaratpower.com.jo (accessed 2025-04-10).
2. Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E. et al. Climate change effects on biodiversity, ecosystems, eco-system services, and natural resource management in the United States. Sci. Total Environ., 2020, 733, 137782.
https://doi.org/10.1016/j.scitotenv.2020.137782
3. Truuts, H., Pukk, P. Elektri tootmine taasiseseisvunud Eestis – põlevkivist taastuvenergiani. 2021.
https://www.stat.ee/et/uudised/elektri-tootmine-taasiseseisvunud-eestis-polevkivist-taastuvenergiani (accessed 2025-04-10).
4. Statistics Estonia. KE033: Production of power plants and consumption of fuels for energy generation.
https://andmed.stat.ee/en/stat/majandus__energeetika__energia-tarbimine-ja-tootmine__aastastatistika (accessed 2025-04-10).
5. European Union. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (“European Climate Law”). Off. J. Eur. Union, L 243, 9 July 2021, 1–17.
6. Vabariigi Valitsus. Energiamajanduse arengukava aastani 2030. 2017.
https://valitsus.ee/sites/default/files/documents/2021-01/enmak_2030.pdf (accessed 2025-04-10)
7. Elering. Estonian long-term power scenarios. Eleringi toimetised, 1/2014 (6).
https://elering.ee/sites/default/files/attachments/Estonian-Long-term-Energy-Scenarios.pdf (accessed 2025-04-10).
8. Saia, A., Neshumayev, D., Hazak, A., Sander, P., Järvik, O., Konist, A. Techno-economic assessment of CO2 capture possibilities for oil shale power plants. Renew. Sustain. Energy Rev., 2022, 169, 112938.
https://doi.org/10.1016/j.rser.2022.112938
9. Lucas, P. U., Gamborg, C., Lund, T. B. Sustainability concerns are key to understanding public attitudes toward woody biomass for energy: a survey of Danish citizens. Renew. Energy, 2022, 194, 181–194.
https://doi.org/10.1016/j.renene.2022.05.075
10. Skoglund, N., Bäfver, L., Fahlström, J., Holmén, E., Renström, C. Fuel design in co-combustion of demolition wood chips and municipal sewage sludge. Fuel Process. Technol., 2016, 141(2), 196–201.
https://doi.org/10.1016/j.fuproc.2015.08.037
11. Nzihou, A., Stanmore, B. The fate of heavy metals during combustion and gasification of contaminated biomass – a brief review. J. Hazard. Mater., 2013, 256–257, 56–66.
https://doi.org/10.1016/J.JHAZMAT.2013.02.050
12. Pettersson, M., Björnsson, L., Börjesson, P. Recycling of ash from co-incineration of waste wood and forest fuels: an overlooked challenge in a circular bioenergy system. Biomass Bioenergy, 2020, 142, 105713.
https://doi.org/10.1016/j.biombioe.2020.105713
13. Huron, M., Oukala, S., Lardière, J., Giraud, N., Dupont, C. An extensive characterization of various treated waste wood for assessment of suitability with combustion process. Fuel, 2017, 202, 118–128.
https://doi.org/10.1016/j.fuel.2017.04.025
14. Siirde, A., Pihu, T., Konist, A., Järvik, O., Nešumajev, D., Maaten, B. et al. Põlevkivituhkade ohtlikkuse uuring. TalTech, Tallinn, 2019, 184 p.
15. Uibu, M., Tamm, K., Viires, R., Reinik, J., Somelar, P., Raado, L.-M. et al. The composition and properties of ash in the context of the modernisation of oil shale industry. Oil Shale, 2021, 38(2), 155–176.
https://doi.org/10.3176/oil.2021.2.04
16. Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E. Release of 22 elements from bottom and fly ash samples of oil shale fueled PF and CFB boilers by a two-cycle standard leaching test. Fuel Process. Technol., 2014, 124, 147–154.
https://doi.org/10.1016/J.FUPROC.2014.03.011
17. Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Comparison of the eco-toxic properties of oil shale industry by-products to those of coal ash. Oil Shale, 2022, 39(1), 1–19.
https://doi.org/10.3176/oil.2022.1.01
18. Gori, M., Bergfeldt, B., Pfrang-Stotz, G., Reichelt, J., Sirini, P. Effect of shortterm natural weathering on MSWI and wood waste bottom ash leaching behaviour. J. Hazard. Mater., 2011, 189(1–2), 435–443.
https://doi.org/10.1016/j.jhazmat.2011.02.045
19. Mitchell, K., Moreno-Jimenez, E., Jones, R., Zheng, L., Trakal, L., Hough, R. et al. Mobility of arsenic, chromium and copper arising from soil application of stabilised aggregates made from contaminated wood ash. J. Hazard. Mater., 2020, 393, 122479.
https://doi.org/10.1016/j.jhazmat.2020.122479
20. Minister of the Environment. 2019. Keskkonnaministri 08.11.2019 määrus nr 61 “Nõuded reovee puhastamise ning heit-, sademe-, kaevandus-, karjääri- ja jahutusvee suublasse juhtimise kohta, nõuetele vastavuse hindamise meetmed ning saasteainesisalduse piirväärtused” (Regulation No. 61 of 08.11.2019 of the Minister of the Environment “Requirements for wastewater treatment and discharge, precipitation, mining, quarry and cooling water, measures for assessing compliance with requirements and limit values for pollutant content”).
https://www.riigiteataja.ee/akt/112112019006?leiaKehtiv (accessed 2025-04-10).
21. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K. et al. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93, 172–180.
https://doi.org/10.1016/j.fuel.2011.08.050
22. EVS (Estonian Centre for Standardisation and Accreditation). 2002. Charac-teri-sation of waste – Leaching – Compliance test for leaching of granular waste materials and sludges – Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction).
https://www.evs.ee/et/evs-en-12457-4-2002 (accessed 2025-04-10).
23 Vaiopoulou, E., Gikas, P. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res., 2012, 46(3), 549–570.
https://doi.org/10.1016/j.watres.2011.11.024
24 Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. Trace metals as paleo-redox and paleoproductivity proxies: an update. Chem. Geol., 2006, 232(1–2), 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012
25. Chen, J. C., Wey, M. Y., Chiang, B. C., Hsieh, S. M. The simulation of hexa-valent chromium formation under various incineration conditions. Chemosphere, 1998, 36(7), 1553–1564.
https://doi.org/10.1016/S0045-6535(97)10053-4
26. Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E. et al. Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation. Fuel Process. Technol., 2013, 115, 174–181.
https://doi.org/10.1016/J.FUPROC.2013.06.001
27. Tang, Q., Du, C., Liu, J., Fan, L., Niu, J., Miao, C. et al. The retention and speciation transformation mechanisms of chromium during bituminous coal combustion: effects of inorganic minerals and combustion temperature. Fuel Process. Technol., 2022, 232, 107273.
https://doi.org/10.1016/j.fuproc.2022.107273
28. Shah, P., Strezov, V., Nelson, P. F. Speciation of chromium in Australian coals and combustion products. Fuel, 2012, 102, 1–8.
https://doi.org/10.1016/j.fuel.2008.11.019
29. Arar, E. J., Long, S. E., Martin, T. D., Seymour, G. Determination of hexa-valent chromium in sludge incinerator emissions using ion chromatography and inductively coupled plasma mass spectrometry. Environ. Sci. Technol., 1992, 26(10), 1944–1950.
https://doi.org/10.1021/es00034a010
30. Petersell, V., Ressar, H., Carlsson, M., Mõttus, V., Enel, M., Mardla, A. et al. The Geochemical Atlas of the Humus Horizon of Estonian Soil. Eesti Geo-loogiakeskus, Sveriges geologiska undersökning, Tallinn, Uppsala, 1997.
31. Häsänen, E., Aunela-Tapola, L., Kinnunen, V., Larjava, K., Mehtonen, A., Salmikangas, T. et al. Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants. Sci. Total Environ., 1997, 198(1), 1–12.
https://doi.org/10.1016/S0048-9697(97)05432-6
32. Aunela-Tapola, L. A., Frandsen, F. J., Häsänen, E. K. Trace metal emissions from the Estonian oil shale fired power plant. Fuel Process. Technol., 1998, 57(1), 1–24.
https://doi.org/10.1016/S0378-3820(98)00069-1
33. Meij, R. Trace element behavior in coal-fired power plants. Fuel Process. Technol., 1994, 39(1–3), 199–217.
https://doi.org/10.1016/0378-3820(94)90180-5
34. Kalembkiewicz, J., Galas, D., Sitarz-Palczak, E. The physicochemical properties and composition of biomass ash and evaluating directions of its applications. Pol. J. Environ. Stud., 2018, 27(6), 2593–2603.
https://doi.org/10.15244/pjoes/80870
35. Sulg, M., Konist, A., Järvik, O. Characterization of different wood species as potential feedstocks for gasification. Agron. Res., 2021, 19(1), 276–299.
https://doi.org/10.15159/AR.21.005
36. Vassilev, S. V., Vassileva, C. G., Baxter, D. Trace element concentrations and associations in some biomass ashes. Fuel, 2014, 129, 292–313.
https://doi.org/10.1016/j.fuel.2014.04.001
37. Saqib, N., Bäckström, M. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature. Waste Manage., 2014, 34(12), 2505–2519.
https://doi.org/10.1016/j.wasman.2014.08.025
38. Mahedi, M., Cetin, B. Leaching of elements from cement activated fly ash and slag amended soils. Chemosphere, 2019, 235, 565–574.
https://doi.org/10.1016/j.chemosphere.2019.06.178
39. Richard, F. C., Bourg, A. C. M. Aqueous geochemistry of chromium: a review. Water Res., 1991, 25(7), 807–816.
https://doi.org/10.1016/0043-1354(91)90160-R
40. Pimentel, P. M., Oliveira, R. M. P. B., Melo, D. M. A., Melo, M. A. F., Assunção, A. L. C., Gonzales, G. Adsorption of chromium ions on oil shale waste. Braz. J. Petrol. Gas, 2011, 5(2), 65–73.
https://doi.org/10.5419/bjpg2011-0008
41. Huggins, F. E., Rezaee, M., Honaker, R. Q., Hower, J. C. On the removal of hexavalent chromium from a Class F fly ash. Waste Manage., 2016, 51, 105–110.
https://doi.org/10.1016/j.wasman.2016.02.038
42. Rai, D., Moore, D. A., Hess, N. J., Rosso, K. M., Rao, L., Heald, S. M. Chromium(III) hydroxide solubility in the aqueous K+-H+-OH–-CO2-HCO3–-CO32–-H2O system: a thermodynamic model. J. Solution Chem., 2007, 36(10), 1261–1285.
https://doi.org/10.1007/s10953-007-9179-5
43. Huang, L., Yu, C. H., Hopke, P. K., Shin, J. Y., Zhihua, F. Trivalent chromium solubility and its influence on quantification of hexavalent chromium in ambient particulate matter using EPA method 6800. J. Air & Waste Manage. Assoc., 2014, 64(12), 1439–1445.
https://doi.org/10.1080/10962247.2014.951745
44. Darakas, E., Tsiridis, V., Petala, M., Kungolos, A. Hexavalent chromium release from lignite fly ash and related ecotoxic effects. J. Environ. Sci. Health – Toxic/Hazard. Subst. Environ. Eng., 2013, 48(11), 1390–1398.
https://doi.org/10.1080/10934529.2013.781886
45. Liu, S., Chen, L., Gao, Y. Hexavalent chromium leaching influenced factors in the weathering chrome slag. Procedia Environ. Sci., 2013, 18, 783–787.
https://doi.org/10.1016/j.proenv.2013.04.105
46. Mellbo, P., Sarenbo, S., Stålnacke, O., Claesson, T. Leaching of wood ash products aimed for spreading in forest floors – influence of method and L/S ratio. Waste Manage., 2008, 28(11), 2235–2244.
https://doi.org/10.1016/j.wasman.2007.09.037
47. Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, B.-M. Removal of hazardous metals from MSW fly ash – an evaluation of ash leaching methods. J. Hazard. Mater., 2010, 173(1–3), 310–317.
https://doi.org/10.1016/j.jhazmat.2009.08.094
48. Quina, M. J., Bordado, J. C. M., Quinta-Ferreira, R. M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Manage., 2009, 29(9), 2483–2493.
https://doi.org/10.1016/j.wasman.2009.05.012
49. Komonweeraket, K., Cetin, B., Aydilek, A. H., Benson, C. H., Edil, T. B. Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel, 2015, 140, 788–802.
https://doi.org/10.1016/j.fuel.2014.09.068
50. Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E. et al. Characterization of water extracts of oil shale retorting residues form gaseous and solid heat carrier processes. Fuel Process. Technol., 2015, 131, 443–451.
https://doi.org/10.1016/J.FUPROC.2014.12.024
51. Alves, C. A., Font, O., Moreno, N., Vicente, E. D., Duarte, M., Tarelho, L. A. C. et al. Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion. Environ. Sci. Pollut. Res., 2019, 26, 22688–22703.
https://doi.org/10.1007/s11356-019-05231-w