ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Research on deformation monitoring system of in situ heater in oil shale wells; pp. 208–226
PDF | https://doi.org/10.3176/oil.2025.2.04

Authors
Hao Yang, Tianyu Sun, Hao Zeng, Junshan Ren
Abstract

The in situ heater, a pivotal component for oil shale heating, is prone to deformation at underground temperatures of up to 450 °C. While lab experiments with optical fiber technology can monitor deformation at temperatures up to 1100 °C, low-pressure tolerance and complex manufacturing hinder its underground application. Current downhole monitoring systems are limited to 300 °C for temperature and 100 °C for deformation, which are insufficient for oil shale conditions. A dedicated online monitoring system for in situ heaters is still lacking. Leveraging the precision and reliability of linear variable differential transformer (LVDT) technology, we designed a real-time deformation monitoring system. Indoor simulations mimicking oil shale environments indicate LVDT’s capability of monitoring up to 480 °C. The system mounts an LVDT unit, encapsulated in vacuum insulation, onto heaters, and then inserts them into horizontal sections via tubing. This design offers a valuable reference for the design and monitoring of in situ heaters in oil shale wells.

References

1. Sun, P., Li, W., Liu, Z., Niu, D., Wu, X., Tao, L., Wang, Z., Luan, Z. Selection of favourable targets for the in-situ conversion of continental oil shale in China. Oil Shale, 2023, 40(3), 177–193. 
https://doi.org/10.3176/oil.2023.3.01  

2. Liu, Z., Meng, Q., Dong, Q., Zhu, J., Guo, W., Ye, S., Liu, R., Jia, J. Characte-r-istics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15–41. 
https://doi.org/10.3176/oil.2017.1.02

3. Xu, Y., Sun, P., Yao, S., Liu, Z., Tian, X., Li, F., Zhang, J. Progress in exploration, development and utilization of oil shale in China. Oil Shale, 2019, 36(2), 285–304. 
https://doi.org/10.3176/oil.2019.2.03  

4. Mi, S., Guo, Q., Zhang, Q., Wang, J. Classification and potential of continental shale oil resources in China and resource evaluation methods and criteria. Oil Shale, 2023, 40(4), 283–320. 
https://doi.org/10.3176/oil.2023.4.02  

5. Li, N. Y., Wang, Y., Chen, F., Han, Y. L., Chen, W., Kang, J. Development status and prospects of in-situ conversion technology in oil shale. Spec. Oil Gas Reservoirs, 2022, 29(3), 1–8. 
https://doi.org/10.3969/j.issn.1006-6535.2022.03.001  

6. Gao, C., Sun, X., Su, J., Long, Q. Global oil shale development technology and its application analysis in Xinjiang, China. Adv. Geosci., 2017, 7(3), 330–335. 
https://doi.org/10.12677/AG.2017.73036  

7. Li, L. L., Zhang, F. Q. Current situation and suggestion of oil shale in-situ exploitation technology. Chem. Eng., 2023, 37(8), 71–75. 
https://doi.org/10.16247/j.cnki.23-1171/tq.20230871

8. Wang, L., Li, Z. An overview of in-situ development technology of oil shale with near and sub-critical water. IOP Conf. Ser.: Earth Environ. Sci., 2019, 295(4), 042105. 
https://doi.org/10.1088/1755-1315/295/4/042105

9. Hao, Y., Xiaoqiao, Q., Fansheng, X., Jialiang, Z., Yanju, L. Temperature distri-bu-tion simulation and optimization design of electric heater for in-situ oil shale heating. Oil Shale, 2014, 31(2), 105–120. 
http://dx.doi.org/10.3176/oil.2014.2.02

10. Boak, J., Kleinberg, R. Shale gas, tight oil, shale oil and hydraulic fracturing. In: Future Energy: Improved, Sustainable and Clean Options for our Planet (Letcher, T. M., ed.). Elsevier, Amsterdam, 2020, 67–95. 
https://doi.org/10.1016/B978-0-08-102886-5.00004-9

11. Hou, J., Ma, Y., Li, S., Teng, J. Development and utilization of oil shale world-wide. Chem. Ind. Eng. Prog., 2015, 34(5), 1183–1190. 
https://doi.org/10.16085/j.issn.1000-6613.2015.05.001  

12. Tan, F., Liu, Z., Tu, J., Yu, C., Lu, C., Tam, H.-Y. Torsion sensor based on inter-core mode coupling in seven-core fiber. Opt. Express, 2018, 26(16), 19835–19844. 
https://doi.org/10.1364/OE.26.019835  

13. Qi, Y., Shen, C., Wang, D., Shi, J., Jiang, X., Zhu, Z. Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery. IEEE Access, 2017, 5, 15066–15079. 
https://doi.org/10.1109/ACCESS.2017.2728010  

14. Zhao, Z., Soto, M. A., Tang, M., Thévenaz, L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt. Express, 2016, 24(22), 25211–25223. 
https://doi.org/10.1364/OE.24.025211  

15. Eybpoosh, M., Berges, M., Noh, H. Y. An energy-based sparse representation of ultrasonic guided-waves for online damage detection of pipelines under varying environmental and operational conditions. Mech. Syst. Sig. Process., 2017, 82, 260–278. 
https://doi.org/10.1016/j.ymssp.2016.05.022  

16. Wang, D., Zhu, H., Zhou, G., Yu, W., Wang, B., Zhou, W. Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry. J. Rock Mech. Geotech. Eng., 2024, 16(1), 231–241. 
https://doi.org/10.1016/j.jrmge.2023.03.007  

17. Xin, W., Pu, C., Liu, W., Liu, K. Landslide surface horizontal displacement monitoring based on image recognition technology and computer vision. Geomorphology, 2023, 431, 108691. 
https://doi.org/10.1016/j.geomorph.2023.108691  

18. Yue, Z., Huang, L., Lin, Y., Lei, M. Research on image deformation monitoring algorithm based on binocular vision. Measurement, 2024, 228, 114394. 
https://doi.org/10.1016/j.measurement.2024.114394  

19. Chen, X., Xu, N., Yang, L., Xiang, D. High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system. Meas. Sci. Technol., 2012, 23(12), 125603. 
https://doi.org/10.1088/0957-0233/23/12/125603  

20. Berke, R. B., Lambros, J. Ultraviolet digital image correlation (UV-DIC) for high temperature applications. Rev. Sci. Instrum., 2014, 85(4), 045121. 
https://doi.org/10.1063/1.4871991  

21. Qiao, M. X., Pan, Z. W., Huang, S. H., Su, Y., Zhang, Q. C. Investigation on digital image correlation measurement technique for high temperature deformation of tungsten materials in vacuum environment. J. Exp. Mech., 2020, 35(4), 557–566. 
https://doi.org/10.7520/1001-4888-19-066  

22. Xia, P., Tan, Y., Li, T., Zhou, Z., Lv, W. A high-temperature resistant photonic crystal fiber sensor with single-side sliding Fabry-Perot cavity for super-large strain measurement. Sens. Actuators A: Phys., 2021, 318, 112492. 
https://doi.org/10.1016/j.sna.2020.112492

23. Li, C. H., Song, Z. Q., Zhang, B., Yang, S. H., Wu, W. X. An all-fiber Fabry-Perot type high-temperature strain sensor. Struct. Environ. Eng., 2024, 51(3), 60–64. 
https://doi.org/10.19447/j.cnki.11-1773/v.2024.03.008

24. Gao, H. C., Tang, C. J., Lan, T., Wang, X. F. Research progress of high tempe-r-ature fiber Fabry-Perot pressure sensor. Instrum. Tech. Sens., 2020, 57(12), 26–31. 

25. Yu, Q. X., Wang, X. N., Song, S. D., Zhao, Y. W., Cui, S. B. Fiber optic pressure sensor system based on extrinsic Fabry-Perot interferometer for high temperature oil well measurement. J. Optoelectron. Laser, 2007, 18(3), 299–302.

26. Li, S. X., Ma, L., Lü, J. S., Zhang, F. X., Liu, X. H., Zhao, Q. C., Li, H., Wang, C. Design of high precision fiber Bragg grating temperature sensor for rapid measurement of oil well temperature profile. Shandong Sci., 2018, 31(3), 55–60. 
https://doi.org/10.19447/j.cnki.11-1773/v.2024.03.008  
https://doi.org/10.1109/OGC.2018.8529849

27. Yang, B., Zhao, Q. C., Che, C. R., An, B. X., Xu, Z. High-precision optical fiber temperature and pressure sensor and its application in production wells. Laser Optoelectron. Prog., 2022, 59(17), 128–133. 
https://doi.org/10.3788/LOP202259.1706006  

28. Wang, G. Research on Monitoring Technology of Casing Deformation in Oil and Water Well Based on Optical Fiber Sensing. Master’s thesis. Qilu University of Technology, 2021. 

29. Chen, W. B., Feng, W. Q., Yin, J. H., Borana, L. LVDTs-based radial strain measurement system for static and cyclic behavior of geomaterials. Measurement, 2020, 155, 107526. 
https://doi.org/10.1016/j.measurement.2020.107526  

30. Mayunga, S. D., Bakaone, M. Dynamic deformation monitoring of Lotsane bridge using global positioning systems (GPS) and linear variable differential transducers (LVDT). J. Data Anal. Inf. Process., 2021, 9(1), 30–50. 
https://doi.org/10.4236/jdaip.2021.91003  

31. Gruber, G., Neumayer, M., Schweighofer, B., Wegleiter, H. Linear variable differential transformer in harsh environments – analysis of temperature drifts for different plunger materials. IEEE Sens. Lett., 2023, 7(9), 1–4. 
https://doi.org/10.1109/LSENS.2023.3306981

32. Li, S., Yu, Y., Duan, C. Analysis of influence of temperature on performance index of LVDT sensor. Electron. Commun. Comput. Sci., 2024, 6(4), 52–54. 
https://doi.org/10.37155/2717-5170-0604-18  

33. Petchmaneelumka, W., Rerkratn, A., Luangpol, A., Riewruja, V. Compensation of temperature effect for LVDT transducer. J. Circuits Syst. Comput., 2018, 27(12), 1850182. 
https://doi.org/10.1142/S0218126618501827  

34. Ghosh, S., Sengupta, A., Pal, K. S., Dandapat, N., Chakraborty, R., Datta, S., Basu, D. Characterization of metallized alumina ceramics. Metall. Mater. Trans. A, 2012, 43(3), 912–920.
https://doi.org/10.1007/s11661-011-0922-6

35. Delblanc, A., Mattsson, R., Gullberg, D., Eidhagen, J. Investigation of the crevice corrosion resistance of UNS S31266 and UNS N06625 using accelerated laboratory test methods. In: CORROSION 2019 Conference & Expo, March 24–28, 2019, Nashville, Tennessee. NACE International, 2019, NACE-2019-13077.

36. Thorhallsson, A. I., Stefansson, A., Karlsdottir, S. N. Corrosion testing of UNS N06625 in a simulated high temperature geothermal environment. In: CORROSION 2018 Conference & Expo, April 15–19, 2018, Phoenix, Arizona. NACE International, 2018, NACE-2018-11058.

37. Zhang, C. L., Wang, X. P., Ning, T. X., Chen, S. C., Luo, L. Y. Simulation test and analysis on hot forming process of alloy UNS N06625. Spec. Steel, 2017, 38(2), 1–5.

38. Abels, J.-M., Strehblow, H.-H. A surface analytical approach to the high temperature chlorination behaviour of Inconel 600 at 700 °C. Corros. Sci., 1997, 39(1), 115–132. 
https://doi.org/10.1016/S0010-938X(96)00112-6  

39. Herrera-Chávez, L. Y., Ruiz, A., López-Morelos, V. H., Rubio-González, C. Microstructural characterization and mechanical response of Inconel 600 welded joint. Mater. Charact., 2019, 157, 109882. 
https://doi.org/10.1016/j.matchar.2019.109882  

40. Karthik, D., Swaroop, S. Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy. J. Alloys Compd., 2017, 694, 1309–1319.
https://doi.org/10.1016/j.jallcom.2016.10.093

41. Shapiro, E., Dieter, G. E. High temperature-high strain rate fracture of Inconel 600. Metall. Trans., 1970, 1(6), 1711–1719.
https://doi.org/10.1007/BF02642021

Back to Issue