This study introduces a novel visual online observation technique for identifying the critical temperature for oil generation. It also examines the hydrocarbon generation properties of Maoming oil shale when subjected to supercritical water. Findings indicate that the critical temperature for Maoming oil shale in supercritical water ranges from 262 to 292 °C, and the visualization reactor facilitates the investigation of this critical temperature. The organic carbon conversion rate for Maoming oil shale can exceed 25.4% within a limited reaction time of one hour. Increasing the water-shale mass ratio enhances the overall conversion of organic carbon in the oil shale and boosts oil production, although it does not significantly improve gas production. Additionally, a higher water-shale mass ratio can decrease the heavy oil fraction in the oil and enhance the selectivity for hydrogen and methane in the gas produced.
1. Xie, T., Zhao, Q., Dong, Y., Jin, H., Wang, Y., Guo, L. Experimental investigation on the hydrocarbon generation of low maturity organic-rich shale in supercritical water. Oil Shale, 2022, 39(3), 169–188.
https://doi.org/10.3176/oil.2022.3.02
2. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy, 2020, 269, 115121.
https://doi.org/10.1016/j.apenergy.2020.115121
3. Deng, S., Wang, Z., Gao, Y., Gu, Q., Cui, X., Wang, H. Sub-critical water extraction of bitumen from Huadian oil shale lumps. J. Anal. Appl. Pyrolysis, 2012, 98, 151−158.
https://doi.org/10.1016/j.jaap.2012.07.011
4. Akiya, N., Savage, P. E. Roles of water for chemical reactions in high-temperature water. Chem. Rev., 2002, 102(8), 2725−2750.
https://doi.org/10.1021/cr000668w
5. Bake, K. D., Pomerantz, A. E. Optical analysis of pyrolysis products of Green
River oil shale. Energy Fuels, 2017, 31(12), 13345−13352.
https://doi.org/10.1021/acs.energyfuels.7b01020
6. Tang, X., Li, S., Yue, C., He, J., Hou, J. Lumping kinetics of hydrodesulfurization and hydrodenitrogenation of the middle distillate from Chinese shale oil. Oil Shale, 2013, 30(4), 517−535.
http://dx.doi.org/10.3176/oil.2013.4.05
7. Lewan, M. Water as a source of hydrogen and oxygen in petroleum formation by hydrous pyrolysis. Am. Chem. Soc., Div. Fuel Chem., 1992, 37, 1643−1649.
8. Hou, L., Ma, W., Luo, X., Liu, J. Characteristics and quantitative models for hydro-carbon generation-retention-production of shale under ICP conditions: example from the Chang 7 member in the Ordos Basin. Fuel, 2020, 279, 118497.
https://doi.org/10.1016/j.fuel.2020.118497
9. Weingärtner, H., Franck, E. U. Supercritical water as a solvent. Angew. Chem., Int. Ed., 2005, 44(18), 2672−2692.
https://doi.org/10.1002/anie.200462468
10. Zhao, Q., Guo, L., Huang, Z., Chen, L., Jin, H., Wang, Y. Experimental investi-gation on enhanced oil recovery of extra heavy oil by supercritical water flooding. Energy Fuels, 2018, 32(2), 1685−1692.
https://doi.org/10.1021/acs.energyfuels.7b03839
11. Guo, L., Jin, H., Lu, Y. Supercritical water gasification research and development in China. J. Supercrit. Fluids, 2015, 96, 144−150.
https://doi.org/10.1016/j.supflu.2014.09.023
12. Kruse, A. Supercritical water gasification. Biofuels, Bioprod. Biorefin., 2008, 2(5), 415−437.
https://doi.org/10.1002/bbb.93
13. Reddy, S. N., Nanda, S., Dalai, A. K., Kozinski, J. A. Supercritical water gasifi-cation of biomass for hydrogen production. Int. J. Hydrogen Energy, 2014, 39(13), 6912−6926.
https://doi.org/10.1016/j.ijhydene.2014.02.125
14. Xie, T., Zhao, Q., Jin, H., Wang, Y., Guo, L. Reaction kinetics study on hydrocarbon generation of medium- and low-maturity organic-rich shale in supercritical water. Energy Fuels, 2023, 37(18), 14192–14201.
https://doi.org/10.1021/acs.energyfuels.3c02494
15. Xie, T., Zhao, Q., Jin, H., Wang, Y., Guo, L. Experimental investigation on the organic carbon migration path and pore evolution during co-thermal hydrocarbon generation of low maturity organic-rich shale and supercritical water. Energy Fuels, 2022, 36(24), 15047–15054.
https://doi.org/10.1021/acs.energyfuels.2c02932
16. Xie, T., Zhao, Q., Dong, Y., Jin, H., Wang, Y., Guo, L. Experimental investiga-tion on hydrocarbon generation of organic-rich shale with low maturity in sub- and supercritical water. Geoenergy Sci. Eng., 2023, 223, 211553.
https://doi.org/10.1016/j.geoen.2023.211553
17. Veski, R., Palu, V., Kruusement, K. Co-liquefaction of kukersite oil shale and pine wood in supercritical water. Oil Shale, 2006, 23(3), 236−248.
http://dx.doi.org/10.3176/oil.2006.3.04
18. Funazukuri, T., Yokoi, S., Wakao, N. Supercritical fluid extraction of Chinese Maoming oil shale with water and toluene. Fuel, 1988, 67(1), 10–14.
https://doi.org/10.1016/0016-2361(88)90004-X
19. Yanik, J., Yüksel, M., Saǧlam, M., Olukçu, N., Bartle, K., Frere, B. Characteri-zation of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel, 1995, 74(1), 46–50.
https://doi.org/10.1016/0016-2361(94)P4329-Z
20. El Harfi, K., Bennouna, C., Mokhlisse, A., Ben chanâa, M., Lemée, L., Joffre, J., Amblès, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. Appl. Pyrolysis, 1999, 50(2), 163–174.
https://doi.org/10.1016/S0165-2370(99)00028-5
21. Liang, X., Zhao, Q., Dong, Y., Guo, L., Jin, Z., Liu, Q. Experimental investiga-tion on supercritical water gasification of organic-rich shale with low maturity for syngas production. Energy Fuels, 2021, 35(9), 7657–7665.
https://doi.org/10.1021/acs.energyfuels.0c04140
22. Hu, H., Zhang, J., Guo, S., Chen, G. Extraction of Huadian oil shale with water in sub- and supercritical states. Fuel, 1999, 78(6), 645–651.
https://doi.org/10.1016/S0016-2361(98)00199-9
23. Nasyrova, Z. R., Kayukova, G. P., Onishchenko, Y. V., Morozov, V. P., Vakhin, A. V. Conversion of high-carbon domanic shale in sub- and supercritical waters. Energy Fuels, 2020, 34(2), 1329–1336.
https://doi.org/10.1021/acs.energyfuels.9b03130