ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Quantification of oil shale industry ash flows – their chemical and mineralogical composition; pp. 129–166
PDF | https://doi.org/10.3176/oil.2025.2.01

Authors
Mari-Liis Ummik, Kadriann Tamm, Oliver Järvik, Dmitri Nešumajev, Kati Roosalu, Tõnu Pihu, Alar Konist
Abstract

The global demand for resources is escalating in today’s rapidly evolving world. As traditional raw materials become scarcer and more expensive, alternative sources have to be found. One such emerging resource is oil shale ash. This article provides a comprehensive overview of the various fractions of oil shale ash generated in the oil shale industry in Estonia. The ash results from the direct combustion of oil shale with pulverised combustion (PC) and circulating fluidised bed combustion (CFBC) technologies, as well as from shale oil production processes. It offers detailed information about the proportions of ash derived from different technological processes and a thorough analysis of their mineralogical and chemical compositions, trace element content, and leaching characteristics. By examining these diverse characteristics, the study enhances understanding of the ash’s potential implications and applications.

References

1. UNEP (United Nations Environment Programme). Global Resources Outlook 2024: Bend the Trend – Pathways to a Liveable Planet as Resource Use Spikes. 2024. 
https://www.unep.org/resources/Global-Resource-Outlook-2024 (accessed 2024-09-25).

2. IEA (International Energy Agency). World Energy Outlook 2023. 2023. 
https://www.iea.org/reports/world-energy-outlook-2023 (accessed 2024-10-01).

3. Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R., Kumar, V. Fly ash for sustainable construction: a review of fly ash concrete and its beneficial use case studies. Cleaner Mater., 2022, 6, 100143. 
https://doi.org/10.1016/j.clema.2022.100143

4. Cho, B. H., Nam, B. H., An, J., Youn, H. Municipal solid waste incineration (MSWI) ashes as construction materials – a review. Materials, 2020, 13(14), 3143. 
https://doi.org/10.3390/ma13143143

5. Martínez-García, R., Jagadesh, P., Zaid, O., Șerbănoiu, A. A., Fraile-Fernández, F. J., de Prado-Gil, J. et al. The present state of the use of waste wood ash as an eco-efficient construction material: a review. Materials, 2022, 15(15), 5349. 
https://doi.org/10.3390/ma15155349

6. Kumar, A., Abbas, S., Saluja, S. Utilization of incineration ash as a construction material: a review. Mater. Today: Proc., 2023, in press. 
https://doi.org/10.1016/j.matpr.2023.05.577

7. Mathapati, M., Amate, K., Prasad, C. D., Jayavardhana, M. L., Raju, T. H. A review on fly ash utilization. Mater. Today: Proc., 2022, 50(5), 1535–1540. 
https://doi.org/10.1016/J.MATPR.2021.09.106

8. Tamanna, K., Raman, S. N., Jamil, M., Hamid, R. Utilization of wood waste ash in construction technology: a review. Constr. Build. Mater., 2020, 237, 117654. 
https://doi.org/10.1016/J.CONBUILDMAT.2019.117654

9. Kermer, R., Hedrich, S., Bellenberg, S., Brett, B., Schrader, D., Schönherr, P.et al. Lignite ash: waste material or potential resource – investigation of metal recovery and utilization options. Hydrometallurgy, 2017, 168, 141–152. 
https://doi.org/10.1016/j.hydromet.2016.07.002

10. Kumar Karan, K., Ebhin Masto, R., Kumar, S., Agarwalla, H., Bari, S. Prospect for recycling critical elements in combustion residues of coal, lignite, and biomass feedstocks. Miner. Eng., 2024, 219, 109063. 
https://doi.org/10.1016/J.MINENG.2024.109063

11. Raado, L.-M., Hain, T., Liisma, E., Kuusik,  R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160. 
https://doi.org/10.3176/oil.2014.2.05

12. Usta, M. C., Yörük, C. R., Hain, T., Paaver, P., Snellings, R., Rozov, E. et al. Evaluation of new applications of oil shale ashes in building materials. Minerals, 2020, 10(9), 765. 
https://doi.org/10.3390/MIN10090765

13. Uibu, M., Tamm, K., Viires, R., Reinik, J., Somelar, P., Raado, L.-M. et al. The composition and properties of ash in the context of the modernisation of oil shale industry. Oil Shale, 2021, 38(2), 155–176. 
https://doi.org/10.3176/oil.2021.2.04

14. Ots, A. Estonian oil shale properties and utilization in power plants. Energetika, 2007, 4(2), 8–18.

15. Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20(3), 
253–263. https://doi.org/10.3176/oil.2003.3.03

16. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2009, 20(3), 193–252. 
https://doi.org/10.3176/oil.2003.3.02

17. Statistics Estonia. Statistical database 
https://andmed.stat.ee/en/stat/majandus__energeetika__energia-tarbimine-ja-tootmine__aastastatistika/KE0240 (accessed 2024-09-29).

18. Estonian Environment Agency. Waste statistics 
https://tableau.envir.ee/views/Avalikud_pringud_2020-2022/Riigitasand?%3Aembed=y&%3Aiid=4&%3AisGuestRedirectFromVizportal=y (accessed 2024-08-19).

19. Arro, H., Prikk, A., Pihu, T., Öpik, I. Utilization of semi-coke of Estonian shale oil industry. Oil Shale, 2002, 19(2), 117–125. 
https://doi.org/10.3176/oil.2002.2.03

20. Saia, A., Neshumayev, D., Hazak, A., Sander, P., Järvik, O., Konist, A. Techno-economic assessment of COcapture possibilities for oil shale power plants. Renew. Sustain. Energy Rev., 2022, 169, 112938. 
https://doi.org/10.1016/j.rser.2022.112938

21. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda, Tallinn, 2006.

22. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419. 
https://doi.org/10.3176/oil.2005.4s.04

23. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva thermal power plants, Estonia. Oil Shale, 2010, 27(4), 339–353. 
https://doi.org/10.3176/oil.2010.4.07

24. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behaviour of ash in ash fields. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion. Springer-Verlag, Berlin, Heidelberg, 2010. 
https://doi.org/10.1007/978-3-642-02682-9_164

25. Paat, A., Traksmaa, R. Investigation of the mineral composition of Estonian oil-shale ash using X-ray diffractometry. Oil Shale, 2002, 19(4), 373–386. 
https://doi.org/10.3176/oil.2002.4.03

26. Paat, A. About the mineralogical composition of Estonian oil shale ash. Oil Shale, 2002, 19(3), 321–333. 
https://doi.org/10.3176/oil.2002.3.08

27. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I. et al. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229–230, 192–200. 
https://doi.org/10.1016/j.jhazmat.2012.05.095

28. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 2013, 30(1), 6–18. 
https://doi.org/10.3176/oil.2013.1.02

29. Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Computational results of the ecotoxic analysis of fly and bottom ash from oil shale power plants and shale oil production facilities. Chem. Eng. Trans., 2020, 81, 967–972. 
https://doi.org/10.3303/CET2081162

30. EVS-EN 12457-4:2002. Characterisation of Waste – Leaching – Compliance Test for Leaching of Granular Waste Materials and Sludges – Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 100 mm (without or with Size Reduction). 
https://www.evs.ee/en/evs-en-12457-4-2002 (accessed 2024-10-25).

31. ASTM D6357-21a. Standard Test Methods for Determination of Trace Elements in Coal, Coke, and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and Graphite Furnace Atomic Absorption Spectro. ASTM International, West Conshohocken, PA June 11, 2021. 
https://doi.org/10.1520/D6357-21A  

32. ISO 10304-1:2007. Water Quality – Determination of Dissolved Anions by Liquid Chromatography of Ions – Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. 2009.

33. Konist, A., Järvik, O., Baird, Z. S., Neshumayev, D. A technical analysis of oil shale firing power units retrofitting for carbon capture and storage (CCS). In: Proceedings of the 15th Greenhouse Gas Control Technologies Conference, March 15–18, 2021, Abu Dhabi, UAE. The IEA Greenhouse Gas R&D Programme, 2021, 1–9. 
http://dx.doi.org/10.2139/ssrn.3812288

34. Konist, A. Investigation of fouling and corrosion of low-temperature reheater in a CFBC boiler. Fuel, 2023, 338, 127373. 
https://doi.org/10.1016/j.fuel.2022.127373

35. Keskkonnaamet. KOTKAS – AVE v2.12.36. 
https://kotkas.envir.ee/permits/public_index?represented_id= (accessed 2024-10-25).

36. Plamus, K., Ots, A., Pihu, T., Neshumayev, D. Firing Estonian oil shale in CFB boilers – ash balance and behaviour of carbonate minerals. Oil Shale, 2011, 28(1), 58–67. 
https://doi.org/10.3176/oil.2011.1.07

37. EU. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union, 2010, L 334, 17–119.

38. Hewlett, P. C. (ed). Lea’s Chemistry of Cement and Concrete. Elsevier, 2003. 
https://doi.org/10.1016/B978-0-7506-6256-7.X5007-3

39. Tallinna Tehnikaülikool, Tartu Ülikool. Põlevkivituhkade ohtlikkuse uuring. 2019.

40. Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E., Loosaar, J. Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation. Fuel Process. Technol., 2013, 115, 174–181. 
https://doi.org/10.1016/j.fuproc.2013.06.001

41. Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Comparison of the ecotoxic properties of oil shale industry by-products to those of coal ash. Oil Shale, 2022, 39(1), 1–19. 
https://doi.org/10.3176/oil.2022.1.01

42. Ohtlike ainete sisalduse piirväärtused pinnases. Riigi Teataja. 
https://www.riigiteataja.ee/akt/104072019006 (accessed 2024-10-28).

43. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T. et al. Experience of Estonian oil shale combustion based on CFB technology at Narva power plants. Oil Shale, 2006, 22(4S), 381–397. 
https://doi.org/10.3176/oil.2005.4s.02

44. Konist, A., Järvik, O., Pikkor, H., Neshumayev, D., Pihu, T. Utilization of pyrolytic wastewater in oil shale fired CFBC boiler. J. Clean. Prod., 2019, 234, 487–493. 
https://doi.org/10.1016/j.jclepro.2019.06.213

45. Raado, L.-M., Hain, T., Liisma, E., Kuusik, R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160. 
https://doi.org/10.3176/oil.2014.2.05

46. Neshumayev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113. 
https://doi.org/10.3176/oil.2019.2S.02

47. Tallinna Tehnikaülikool, Nomine Consult OÜ, Hendrikson & Ko OÜ. Eesti põlevkiviõli tootmise parima võimaliku tehnika (PVT) arengu analüüs ning ettepanekud PVT ajakohastamiseks. 2022. 
https://kliimaministeerium.ee/elurikkus-keskkonnakaitse/toostusheide-ja-kemikaalid/pvt#uuringud (accessed 2024-12-01).

48. VKG (Viru Keemia Grupp). Sustainable Development Report 2020–2021
https://www.vkg.ee/SAA2020-2021/en/index.html (accessed 2024-12-12).

49. Pihu, T., Konist, A., Puura, E., Liira, M., Kirsimäe, K. Properties and environmental impact of oil shale ash landfills. Oil Shale, 2019, 36(2), 257–270. 
https://doi.org/10.3176/OIL.2019.2.01

50. European Commission. 2003/33/EC: Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal, 2003, L 011, 27–49.

51. European Commission. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union, 2008, L348, 84–97.

52. European Commission. Proposal for a Directive of the European Parliament and of the Council amending Directive 2000/60/EC establishing a framework for Community action in the field of water policy, Directive 2006/118/EC on the protection of groundwater against pollution and deterioration and Directive 2008/105/EC on environmental quality standards in the field of water policy. EUR-Lex, 2022. 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0540

Back to Issue