Abundant coal and oil shale resources are developed in the coal-bearing member of the Shimengou Formation (J2sh1) in the northern Qaidam Basin, NW China. A better understanding of the formation mechanism of these oil shales is of great significance for the exploration of potential unconventional oil and gas resources, and the co-development of coal and oil shale resources. In this study, the geochemistry of 16 samples from drilling cores was used to determine paleoclimate, paleosalinity, redox conditions, chemical weathering intensity, provenance, and tectonic setting. The results show that the geochemical characteristics of the samples are similar to the composition of the upper continental crust, with a warm and humid paleoclimate, a freshwater to brackish paleosalinity condition, a generally anoxic condition, and intense weathering during the Middle Jurassic. The provenance was mainly felsic igneous rocks, and the prevailing tectonic setting was passive margin. During the Middle Jurassic, the warm and humid climate, caused by the low paleolatitude and water vapor from the Tethys Ocean, made the provenance mainly from Hercynian intrusive rocks, which underwent intense weathering and entered the northern Qaidam Basin along with plant material. During water regression periods, abundant terrestrial plants formed coal, while during flooding periods, the increasing water depth and the input of nutrients from terrestrial debris promoted the development of lake algae. Algae and other lake organisms, as well as terrestrial plants, provided the material basis for the formation of organic matter. The anoxic preservation conditions enabled the preservation of organic matter, resulting in the formation of oil shale. This study helps to understand the formation mechanism of the J2sh1 oil shale and promotes the utilization of oil shale in the studied area.
1. Li, M., Shao, L. Y., Lu, J., Baruch, S., Wen, H. J., Li, Y. H. Sequence stratigraphy and paleogeography of the Middle Jurassic coal measures in the Yuqia coalfield, northern Qaidam Basin, northwestern China. AAPG Bull., 2014, 98(12), 2531–2550.
https://doi.org/10.1306/06041413129
2. Guo, T. X., Ren, S. M., Luo, X. R., Bao, S. J., Wang, S. J., Zhou, Z., Chen, X. L., Li, H. H., Xu, Q. F. Accumulation conditions and prospective areas of shale gas in the Middle Jurassic Dameigou Formation, northern Qaidam Basin, Northwest China. Geol. J., 2018, 53(6), 2944–2954.
https://doi.org/10.1002/gj.3134
3. Fu, S. T., Ma, D. D., Guo, Z. J., Cheng, F. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation, NW China. Petrol. Explor. Dev., 2015, 42(6), 778–789.
https://doi.org/10.1016/S1876-3804(15)30074-4
4. Tian, J., Li, J., Kong, H., Zeng, X., Wang, X., Guo, Z. Genesis and accumulation process of deep natural gas in the Altun foreland on the northern margin of the Qaidam Basin. J. Petrol. Sci. Eng., 2021, 200, 108147.
https://doi.org/10.1016/j.petrol.2020.108147
5. Li, G. X., Zhu, R. K., Zhang, Y. S., Chen, Y., Cui, J. W., Jiang, Y. H., Wu, K. Y., Sheng, J., Xian, C. G., Liu, H. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China. Petrol. Explor. Dev., 2022, 49(1), 21–36.
https://doi.org/10.1016/S1876-3804(22)60002-8
6. Wang, J. X., Sun, P. C., Liu, Z. J., Xu, Y. B., Li, L. Evaluation of oil shale resour-ces based on geochemistry and logging in Tuanyushan, Qaidam Basin, Northwest China. Oil Shale, 2020, 37(3), 188–206.
http://dx.doi.org/10.3176/oil.2020.3.02
7. Bai, Y. Y., Lv, Q. T., Liu, Z. J., Sun, P. C., Xu, Y. B., Meng, J. Y., Meng, Q. T., Xie, W. Q., Wang, J. X., Wang, K. B. Major, trace and rare earth element geo-chemistry of coal and oil shale in the Yuqia area, Middle Jurassic Shimengou Formation, northern Qaidam Basin. Oil Shale, 2020, 37(1), 1–31.
http://dx.doi.org/10.3176/oil.2020.1.01
8. Wang, J. X., Sun, P. C., Liu, Z. J., Li, L. Depositional environmental controls on the genesis and characteristics of oil shale: case study of the Middle Jurassic Shimengou Formation, northern Qaidam Basin, northwest China. Geol. J., 2020, 55(6), 4585–4603.
https://doi.org/10.1002/gj.3688
9. Xu, Y. B., Sun, P. C., Yao, S. Q., Liu, Z. J., Tian, X. M., Li, F., Zhang, J. Q. Progress in exploration, development and utilization of oil shale in China. Oil Shale, 2019, 36(2), 285–304.
https://doi.org/10.3176/oil.2019.2.03
10. Rollinson, H. R. A terrane interpretation of the Archaean Limpopo Belt. Geol. Mag., 1993, 130(6), 755–765.
https://doi.org/10.1017/S001675680002313X
11. Chen, L., Zhang, B., Jiang, S., Chen, X., Zhang, G., Zhang, J., Wei, W., Lu, Y., Chen, P., Lin, W. Provenance, source weathering, and tectonic setting of the lower Cambrian Shuijingtuo Formation in the middle Yangtze area, China. Mar. Petrol. Geol., 2022, 139, 105584.
https://doi.org/10.1016/j.marpetgeo.2022.105584
12. Tao, S., Xu, Y. B., Tang, D. Z., Xu, H., Li, S., Chen, S. D., Liu, W. B., Cui, Y., Gou, M. F. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: implications for paleoclimate conditions, weathering, prove-nance and tectonic setting. Int. J. Coal. Geol., 2017, 184, 42–56.
https://doi.org/10.1016/j.coal.2017.11.007
13. Zhang, P. L., Meng, Q. T., Liu, Z. J., Hu, F. Mineralogy and geochemistry of the Lower Cretaceous Jiufotang Formation, Beipiao Basin, NE China: implications for weathering, provenance, and tectonic setting. ACS Earth Space Chem., 2021, 5(6), 1288–1305.
https://doi.org/10.1021/acsearthspacechem.0c00216
14. Fu, L., Guan, P., Zhao, W. Y., Wang, M., Zhang, Y., Lu, J. W. Heavy mineral feature and provenance analysis of Paleogene Lulehe Formation in Qaidam Basin. Acta Petrol. Sin., 2013, 29(8), 2867–2875.
15. Jian, X., Guan, P., Zhang, D. W., Zhang, W., Feng, F., Liu, R. J., Lin, S. D. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol., 2013, 290, 109–125.
https://doi.org/10.1016/j.sedgeo.2013.03.010
16. Jian, X., Guan, P., Zhang, W., Feng, F. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: implications for provenance and weathering. Chem. Geol., 2013, 360–361, 74–88.
https://doi.org/10.1016/j.chemgeo.2013.10.011
17. Zhu, W., Wu, C., Wang, J., Zhou, T., Li, J., Zhang, C., Li, L. Heavy mineral com-po—sitions and zircon U–Pb ages of Cenozoic sandstones in the SW Qaidam Basin, northern Tibetan Plateau: implications for provenance and tectonic setting. J. Asian Earth Sci., 2017, 146, 233–250.
https://doi.org/10.1016/j.jseaes.2017.05.023
18. Hong, D., Jian, X., Fu, L., Zhang, W. Garnet trace element geochemistry as a sediment provenance indicator: an example from the Qaidam Basin, northern Tibet. Mar. Petrol. Geol., 2020. 116, 104316.
https://doi.org/10.1016/j.marpetgeo.2020.104316
19. Zhang, X., Gao, Z., Fan, T., Xue, J., Li, W., Zhang, H., Cao, F. Element geo-chemical characteristics, provenance attributes, and paleosedimentary environment of the Paleogene strata in the Lenghu area, northwestern Qaidam Basin. J. Petrol. Sci. Eng., 2020, 195, 107750.
https://doi.org/10.1016/j.petrol.2020.107750
20. Li, C., Zheng, D., Zhou, R., Wang, W., Yu, J., Liu, C., Wang, Y., Pang, J., Ma, Y., Hao, Y., Li, Y., Wang, X. Topographic growth of the northeastern Tibetan Plateau during the Middle–Late Miocene: insights from integrated provenance analysis in the NE Qaidam Basin. Basin Res., 2021, 33(6), 3212–3230.
https://doi.org/10.1111/bre.12600
21. Shu, D., Xu, S., Wu, S., Li, S., Wang, D., Xiao, Y., Wu, X., Wang, J., Somerville, I. Jurassic sedimentary provenances of the Hongshan and Huobuxun sags in the eastern segment of the northern Qaidam Basin: basin–mountain coupling. Geol. J., 2017, 52(S1), 380–393.
https://doi.org/10.1002/gj.3097
22. Zhao, J., Zeng, X., Tian, J., Hu, C., Wang, D., Yan, Z., Wang, K., Zhao, X. Prove—nance and paleogeography of the Jurassic northwestern Qaidam Basin (NW China): evidence from sedimentary records and detrital zircon geochronology. J. Asian Earth Sci., 2020, 190, 104060.
https://doi.org/10.1016/j.jseaes.2019.104060
23. Yuan, J., Liu, Y., Li, W., Jiang, L., Yuan, S., Li, S. Reconstruction of the early–middle Jurassic source-to-sink system in the western Qaidam Basin (North Tibet): constraints from zircon U–Pb ages of Jurassic sediments and granites. J. Asian Earth Sci., 2020, 232, 105164.
https://doi.org/10.1016/j.jseaes.2022.105164
24. Zhang, X., Gao, Z., Fan, T., Xue, J., Li, W., Cao, F., Zhang, H. Geochemical characteristics, provenance and paleodepositional environment of the Lower Jurassic Huxishan Formation in the Lenghu area, northwestern Qaidam Basin, North West China: implications for organic matter origin. J. Petrol. Sci. Eng., 2021, 205, 108951.
https://doi.org/10.1016/j.petrol.2021.108951
25. Ritts, B. D., Hanson, A. D., Zinniker, D., Moldowan, J. M. Lower–Middle Jurassic nonmarine source rocks and petroleum systems of the northern Qaidam Basin, northwest China. AAPG Bull., 1999, 83(12), 1980–2005.
https://doi.org/10.1306/E4FD4661-1732-11D7-8645000102C1865D
26. Wang, Y. X., Xu, S., Hao, F., Poulton, S. W., Zhang, Y. Y., Guo, T. X., Lu, Y. B., Bai, N. Arid climate disturbance and the development of salinized lacustrine oil shale in the Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2021, 577, 110533.
https://doi.org/10.1016/j.palaeo.2021.110533
27. Wu, Z., Grohmann, S., Littke, R., Guo, T., He, S., Baniasad, A. Organic petro-l-ogic and geochemical characterization of petroleum source rocks in the Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China: insights into paleo-depositional environment and organic matter accumulation. Int. J. Coal Geol., 2022, 259, 104038.
https://doi.org/10.1016/j.coal.2022.104038
28. Yu, X., Guo, Z., Guan, S., Du, W., Wang, Z., Bian, Q., Li, L. Landscape and tectonic evolution of Bayin River watershed, northeastern Qaidam Basin, northern Tibetan Plateau: implications for the role of river morphology in source analysis and low temperature thermochronology. J. Geophys. Res. Earth Surf., 2019, 124(7), 1701–1719.
https://doi.org/10.1029/2018JF004989
29. Tang, W. Q., Zhang, D. W, Zhou, Y. X., Liu, Y. Y., Wu, K. Y., Zhang, P. C., Han, Q. C., Li, F. J., Ma, C. Astronomical forcing in the coal-bearing Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China. Ore Geol. Rev., 2023, 161, 105663.
https://doi.org/10.1029/2018JF004989
30. Gong, S. L., Chen, N. S., Wang, Q. Y., Kusky, T. M., Wang, L., Zhang, L., Ba, J., Liao, F. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai–Tibet Plateau and its tectonic significance: LA-ICP-MS U–Pb zircon geochronology and geochemistry. Gondwana Res., 2012, 21(1), 152–166.
https://doi.org/10.1016/j.gr.2011.07.011
31. Cao, J., Wu, M., Chen, Y., Hu, K., Bian, L., Wang, L., Zhang, Y. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Geochem., 2012, 72(3), 245–252.
https://doi.org/10.1016/j.chemer.2011.12.002
32. Ross, D. J. K., Bustin, R. M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem. Geol., 2009, 260(1–2), 1–19.
https://doi.org/10.1016/j.chemgeo.2008.10.027
33. Nesbitt, H. W., Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299, 715–717.
http://dx.doi.org/10.1038/299715a0
34. Taylor, S. R., McLennan, S. M. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 1985.
35. Boynton, W. V. Geochemistry of the rare earth elements: meteorite studies. In: Rare Earth Element Geochemistry (Henderson, P., ed.). Elsevier, Amsterdam, 1984.
https://doi.org/10.1016/B978-0-444-42148-7.50008-3
36. Haskin, L. A., Haskin, M. A., Frey, F. A., Wilderman, T. R. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements (Ahrens, L. H., ed.). Pergamon, Oxford, 1968.
https://doi.org/10.1016/B978-0-08-012835-1.50074-X
37. Jia, J. L., Liu, Z. J., Bechtel, A., Strobl, S. A., Sun, P. C. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao basin, NE China). Int. J. Earth Sci., 2013, 102(6), 1717–1734.
http://dx.doi.org/10.1007/s00531-013-0903-7
38. Ma, M., Lei, C., Rahman, M. J. J. Paleoenvironmental reconstruction of the Eocene sediments in the Baiyun sag of the Pearl River Mouth Basin. Front. Earth Sci., 2023, 11, 1177240.
https://doi.org/10.3389/feart.2023.1177240
39. Yang, Y. Y., Liu, Y. Q., Zhou, D. W., Jiao, X., Cao, Q., Meng, Z. Y., Zhao, M. R. Lithotypes, organic matter and paleoenvironment characteristics in the Chang73 submember of the Triassic Yanchang Formation, Ordos Basin, China: implications for organic matter accumulation and favourable target lithotype. J. Petrol. Sci. Eng., 2022, 216, 110691.
https://doi.org/10.1016/j.petrol.2022.110691
40. Xu, J. J., Jiang, J. C., Wang, D. Y., Xu, P., Wang, F. L., Li, H. Y., Cheng, X. G., Wu, Q. L., Cheng, F. Q., Lin, L. M., Xu, Y. B. Main controlling factors evolution on high-quality source rocks development in the Shanan Sag, Bohaibay Basin, NE China: implication from structure, depositional environment, and organic matter. J. Asian Earth Sci., 2024, 263, 106020.
https://doi.org/10.1016/j.jseaes.2024.106020
41. Chen, Y., Gilder, S., Halim, N., Cogné, J. P., Courtillot, V. New paleomagnetic constraints on central Asian kinematics: displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics, 2002, 21(5), 6-1–6-19.
https://doi.org/10.1029/2001TC901030
42. Halim, N., Chen, Y., Cogné, J. P. A first palaeomagnetic study of Jurassic formations from the Qaidam basin, northeastern Tibet, China – tectonic impli-cations. Geophys. J. Int., 2003, 153(1), 20–26.
https://doi.org/10.1046/j.1365-246X.2003.01860.x
43. Yang, P., Xie, Z., Yuan, X., Zhu, S., Yi, D. Palaeoecological characteristics and its palaeogeographic significance of the Jurassic in northern margin of Qaidam Basin. J. Palaeogeogr., 2006, 8(2), 165–173.
https://doi.org/10.3969/j.issn.1671-1505.2006.02.003
44. Fu, J. H., Li, S. X., Xu, L. M., Niu, X. B. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petrol. Explor. Dev., 2018, 45(6), 998–1008.
https://doi.org/10.1016/S1876-3804(18)30104-6
45. Lei, B. J., Que, H. P., Hu, N., Niu, Z. J., Wang, H. Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in western Hubei. Sediment. Geol. Tethyan Geol., 2002, 22(2), 70–79.
46. Li, L., Liu, Z. J., George, S. C., Sun, P. C., Xu, Y. B., Meng, Q. T., Wang, K. B., Wang, J. X. Lake evolution and its influence on the formation of oil shales in the Middle Jurassic Shimengou Formation in the Tuanyushan area, Qaidam Basin, NW China. Geochem., 2019, 79(1), 162–177.
https://doi.org/10.1016/j.geoch.2018.12.006
47. Wignall, P. B., Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science, 1996, 272(5265), 1155–1158.
https://doi.org/10.1126/science.272.5265.1155
48. Hallberg, R. O. A. Geochemical method for investigation of pale-oredox conditions in sediments. Ambio Spec. Rep., 1976, 4, 139–147.
49. Acharya, S. S., Panigrahi, M. K., Gupta, A. K., Tripathy, S. Response of trace metal redox proxies in continental shelf environment: the Eastern Arabian Sea scenario. Cont. Shelf Res., 2015, 106, 70–84.
https://doi.org/10.1016/j.csr.2015.07.008
50. Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. Trace metals as paleo-redox and paleoproductivity proxies: an update. Chem. Geol., 2006, 232(1–2), 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012
51. McLennan, S. M. Weathering and global denudation. J. Geol., 1993, 101(2), 295–303.
https://doi.org/10.1086/648222
52. Fedo, C. M., Nesbitt, H. W., Young, G. M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology, 1995, 23(10), 921–924.
https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
53. McLennan, S. M., Taylor, S. R. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J. Geol., 1991, 99(1), 1–21.
https://doi.org/10.1086/629470
54. Liu, R., Liu, Z. J., Sun, P. C., Xu, Y. B., Liu, D. Q., Yang, X. H., Zhang, C. Geo-che—mistry of the Eocene Jijuntun Formation oil shale in the Fushun Basin, northeast China: implications for source-area weathering, provenance and tectonic setting. Geochem., 2015, 75(1), 105–116.
https://doi.org/10.1016/j.chemer.2014.08.004
55. Song, Y., Liu, Z. J., Meng, Q. T., Wang, Y. M., Zheng, G. D., Xu, Y. B. Petro-graphy and geochemistry characteristics of the lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: implications for provenance and tectonic setting. Mineral. Petrol., 2017, 111(3), 383–397.
https://doi.org/10.1007/s00710-016-0476-9
56. Floyd, P. A., Leveridge, B. E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc., 1987, 144(4), 531–542.
https://doi.org/10.1144/gsjgs.144.4.0531
57. Wronkiewicz, D. J., Condie, K. C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, 1987, 51(9), 2401–2416.
https://doi.org/10.1016/0016-7037(87)90293-6
58. Bhatia, M. R., Crook, K. A. W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., 1986, 92(2), 181–193.
http://dx.doi.org/10.1007/BF00375292
59. Maynard, J. B., Valloni, R., Yu, H. S. Composition of modern deep-sea sands from arc-related basins. Geol. Soc. Lond. Spec. Publ., 1982, 10(1), 551–561.
https://doi.org/10.1144/GSL.SP.1982.010.01.36
60. Bhatia, M. R. Plate tectonics and geochemical composition of sandstone. J. Geol., 1983, 91(6), 611–627.
http://dx.doi.org/10.1086/628815
61. Armstrong-Altrin, J. S., Verma, S. P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment. Geol., 2005, 177(1–2), 115–129.
https://doi.org/10.1016/j.sedgeo.2005.02.004
62. Ma, P. F., Wang, L. C., Wang, C. S., Wu, X. H., Wei, Y. S. Organic-matter accumulation of the lacustrine Lunpola oil shale, central Tibetan Plateau: controlled by the paleoclimate, provenance, and drainage system. Int. J. Coal Geol., 2015, 147–148, 58–70.
https://doi.org/10.1016/j.coal.2015.06.011
63. He, Z. H., Liu, Z. J., Guo, W. The heavy mineral analysis and its geological significance of Dameigou section in northern Qaidam Basin. World Geol., 2001, 20(3), 279–284, 312.
64. Wang, T., Liu, Z. J., Sun, P. C., Bai, Y. Y., Song, S. Sandstone detrital composition and provenance tectonic attributes of Middle Jurassic Shimengou Formation in Yuqia area of Qaidam Basin. Global Geol., 2018, 38(1), 154–161.
65. Feng, H. W., Xu, S. M., Wang, J. D., Zhang, G. L., Zeng, Z. P., Shu, P. C. Jurassic provenances and their transition mechanism of the Delingha Sag in the eastern segment of northern margin of the Qaidam Basin, North Tibet. Geosyst. Geoenviron., 2022, 1(4), 100097.
https://doi.org/10.1016/j.geogeo.2022.100097
66. Yu, L., Xiao, A. C., Wu, L., Tian, Y. T., Rittner, M., Lou, Q. Q., Pan, X. T. Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications: evidence from detrital zircon geochronology. Int. J. Earth Sci., 2017, 106, 2713–2726.
https://ui.adsabs.harvard.edu/link_gateway/2017IJEaS.106.2713Y/doi:10.1007/s00531-017-1455-z
https://doi.org/10.1007/s00531-017-1455-z
67. Qian, T., Wang, Z. X., Wang, Y., Liu, S. F., Gao, W. L., Li, W. P. Jurassic evolution of the Qaidam Basin in western China: constrained by stratigraphic succession, detrital zircon U–Pb geochronology and Hf isotope analysis. Geol. Soc. Am. Bull., 2021, 133(11–12), 2291–2318.
https://doi.org/10.1130/B35757.1
68. Qinghai Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province. Geological Publishing House, Beijing, 1991.
69. Hu, Q. T., Guan, P., Wang, D. H., Li, S. E., Xiao, Y. J., Zhang, C., Bai, L., Zhang, J. H. Provenance analysis of the Middle Jurassic in northeastern Qaidam Basin: evidence from heavy minerals, elemental geochemistry and detrital zircon U–Pb geochronology. Acta Sedimentol. Sin., 2024, 42(2), 466-485.
https://doi.org/10.14027/j.issn.1000-0550.2022.044
70.Li, H. R. Research on Metallogenesis of Polymetal Deposits in the Phanerozoic Continental Volcanic Rocks Areas, the Periphery of Qaidam Block, Qinghai Province. PhD thesis. Jilin University, Changchun, 2021.
71. Cheng, Y. Z., Gao, R., Lu, Z. W., Li, W. H., Wang, G. W., Chen, S., Wu, G. W., Cai, Y. G. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau. Earth Sci. Fronti., 2023, 30(5), 314–333.
72. Sun, J. P., Chen, S. Y., Liu, C. L., Ma, Y. S., Yin, C. M., Peng, Y., Shao, P. C., Ma, S., Liu, J. Tectonic setting of northeastern Qaidam Basin and its evolution during the Late Paleozoic: evidence from geochemical characteristics of detrital rock. Earth Sci. Front., 2016, 23(5), 45–55.
https://doi.org/10.13745/j.esf.2016.05.005
73. Hou, H. H., Liu, S. J., Shao, L. Y., Li, Y. H., Zhao, M. E., Cui, W. Elemental geo-chemistry of the Middle Jurassic shales in the northern Qaidam Basin, northwestern China: constraints for tectonics and paleoclimate. Open Geosci., 2021, 13(1), 1448–1462.
https://doi.org/10.1515/geo-2020-0318
74. Hu, S. Q., Guo, W. P., Cao, Y. J., Huang, J. X., Mou, Z. H. Tectonic framework and structure evolution of Mesozoic and Cenozoic in the northern margin of Qaidam Basin. Xinjiang Pet. Geol., 2001, 22(1), 13–16.