This study successfully applied reactive force field (ReaxFF) molecular dynamic simulations to study the two-stage transformation of kerogen: initially transforming into pyrolytic bitumen and then into final products. It was found that the carbon–oxygen bond in the kerogen skeleton chain breaks first, while further transformation involves significant carbon–carbon bond breakage. Specifically, carbon–carbon bond breakage contributes almost 66.7% to pyrolytic bitumen formation, and nearly 80% to the final product formation. In addition, higher heating rates favor higher bond rupture speed and lead to a decline in heteroatoms within shale oil. In summary, this work provides more atomic insights of oil shale kerogen decomposition.
1. Wang, S., Liu, J., Jiang, X., Han, X., Tong, J. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27–47.
https://doi.org/10.3176/oil.2013.1.04
2. Wang, S., Jiang, X., Han, X., Tong, J. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol., 2014, 121, 9–15.
https://doi.org/10.1016/j.fuproc.2014.01.005
3. Ahmad, N., Williams, P. T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales. J. Anal. Appl. Pyrolysis, 1998, 46(1), 31–49.
https://doi.org/10.1016/S0165-2370(98)00069-2
4. Salhi, N., Bennouna, C., Bitar, H., Sergent, M., Luu, R. P. T. An experimental design to optimize pyrolysis conditions of Timahdit (Morocco) oil shale. Fuel, 1996, 75(5), 633–640.
https://doi.org/10.1016/0016-2361(95)00258-8
5. Hershkowitz, F., Olmstead, W. N., Rhodes, R. P., Rose, K. D. Molecular mechanism of oil shale pyrolysis in nitrogen and hydrogen atmospheres. In: Geochemistry and Chemistry of Oil Shales (Miknis, F. P., McKay, J. F., eds). American Chemical Society, Washington, 1983, 301–316.
https://doi.org/10.1021/bk-1983-0230.ch015
6. Wen, C. S., Kobylinski, T. P. Low-temperature oil shale conversion. Fuel, 1983, 62(11), 1269–1273.
https://doi.org/10.1016/S0016-2361(83)80008-8
7. Li, Q., Han, X., Liu, Q., Jiang, X. Thermal decomposition of Huadian oil shale: Part 1. Critical organic intermediates. Fuel, 2014, 121, 109–116.
http://dx.doi.org/10.1016/j.fuel.2013.12.046
8. Chen, B., Han, X., Jiang, X. In situ FTIR analysis of the evolution of functional groups of oil shale during pyrolysis. Energy Fuels, 2016, 30(7), 5611–5616.
https://doi.org/10.1021/acs.energyfuels.6b00885
9. Duin, A. C. T., van, Dasgupta, S., Lorant, F., Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 2001, 105(41), 9396–9409.
https://doi.org/10.1021/jp004368u
10. Chenoweth, K., Duin, A. C. T., van, Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A, 2008, 112(5), 1040–1053.
https://doi.org/10.1021/jp709896w
11. Wang, H., Feng, Y., Zhang, X., Lin, W., Zhao, Y. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation. Fuel, 2015, 145, 241–248.
https://doi.org/10.1016/j.fuel.2014.12.074
12. Castro-Marcano, F., Kamat, A. M., Russo, M. F., Jr., Duin, A. C. T., van, Mathews, J. P. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust. Flame, 2012, 159(3), 1272–1285.
https://doi.org/10.1016/j.combustflame.2011.10.022
13. Zheng, M., Li, X., Liu, J., Wang, Z., Gong, X., Guo, L., Song, W. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis. Energy Fuels, 2013, 28(1), 522–534.
https://doi.org/10.1021/ef402140n
14. Liu, X., Li, X., Liu, J., Wang, Z., Kong, B., Gong, X., Yang, X., Lin, W., Guo, L. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics. Polym. Degrad. Stab., 2014, 104, 62–70.
https://doi.org/10.1016/j.polymdegradstab.2014.03.022
15. Liu, X., Zhan, J.-H., Lai, D., Liu, X., Zhang, Z., Xu, G. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuels, 2015, 29(5), 2987–2997.
https://doi.org/10.1021/acs.energyfuels.5b00084
16. Qian, Y., Zhan, J.-H., Lai, D., Li, M., Liu, X., Xu, G. Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation. Int. J. Hydrog. Energy, 2016, 41(28), 12093–12100.
https://doi.org/10.1016/j.ijhydene.2016.05.106
17. Mu, M., Han, X., Wang, S., Jiang, X. Interactions of oil shale and hydrogen-rich wastes during co-pyrolysis: co-pyrolysis of oil shale and waste tire. Energy Fuels, 2023, 37(6), 4222–4232.
https://doi.org/10.1021/acs.energyfuels.2c02954
18. Pan, S. Molecular Simulation on Oil Shale Kerogen Molecular Structure during Pyrolysis Reaction. Master’s thesis. Northeast Electric Power University, China, 2020.
19. Wang, Q., Cheng, F., Pan, S. Chemical bond concentration and energy density of oil shale kerogen. J. Fuel Chem. Technol., 2017, 45(10), 1209–1218.
20. Ru, X., Cheng, Z., Song, L., Wang, H., Li, J. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen. J. Mol. Struct., 2012, 1030, 10–18.
https://doi.org/10.1016/j.molstruc.2012.07.027
21. Liu, L., Liu, Y., Zybin, S. V., Sun, H., Goddard, W. A. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J. Phys. Chem. A, 2011, 115(40), 11016–11022.
https://doi.org/10.1021/jp201599t
22. Xu, H., Yu, H., Fan, J., Xia, J., Liu, H., Wu, H. Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process. Energy, 2022, 242, 122992.
https://doi.org/10.1016/j.energy.2021.122992
23. Döntgen, M., Przybylski-Freund, M.-D., Kröger, L. C., Kopp, W. A., Ismail, A. E., Leonhard, K. Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations. J. Chem. Theory Comput., 2015, 11(6), 2517–2524.
https://doi.org/10.1021/acs.jctc.5b00201
24. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 2010, 18(1), 015012.
https://doi.org/10.1088/0965-0393/18/1/015012
25. Mettler, M. S., Mushrif, S. H., Paulsen, A. D., Javadekar, A. D., Vlachos, D. G., Dauenhauer, P. J. Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ. Sci., 2012, 5(1), 5414–5424.
https://doi.org/10.1039/c1ee02743c
26. Yuan, C., Jiang, D., Wang, S., Barati, B., Gong, X., Cao, B., Zhang, R., Zhang, C., Odey, E. A. Study on catalytic pyrolysis mechanism of seaweed polysaccharide monomer. Combust. Flame, 2020, 218, 1–11.
https://doi.org/10.1016/j.combustflame.2020.04.022
27. You, Y., Wang, X., Han, X., Jiang, X. Kerogen pyrolysis model based on its chemical structure for predicting product evolution. Fuel, 2019, 246, 149–159.
https://doi.org/10.1016/j.fuel.2019.02.075
28. Bai, F., Guo, W., Lü, X., Liu, Y., Guo, M., Li, Q., Sun, Y. Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel, 2015, 146, 111–118.
https://doi.org/10.1016/j.fuel.2014.12.073
29. Feng, W., Zheng, M., Jin, L., Bai, J., Kong, L., Li, H., Bai, Z., Li, W. Co-pyrolysis behaviors of coal and polyethylene by combining in-situ Py-TOF-MS and reactive molecular dynamics. Fuel, 2023, 331, 125802.
https://doi.org/10.1016/j.fuel.2022.125802
30. Hou, S., Xu, Y. Organic Chemistry. Higher Education Press, Beijing, 2015.
31. Han, X., Chen, B., Li, Q., Tong, J., Jiang, X. Organic nitrogen conversion during the thermal decomposition of Huadian oil shale of China. Oil Shale, 2017, 34(2), 97–109.
https://doi.org/10.3176/oil.2017.2.01
32. Evans, E. J., Batts, B. D., Cant, N. W., Smith, J. W. The origin of nitriles in shale oil. Org. Geochem., 1985, 8(5), 367–374.
https://doi.org/10.1016/0146-6380(85)90015-4
33. Singh, B., Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab., 2008, 93(3), 561–584.
https://doi.org/10.1016/j.polymdegradstab.2007.11.008
34. Peng, K., Wu, Q., Tipeng, W., Zongqiang, F., Liwei, J., Zhongfu, T. Generation mechanism of NOx and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: a DFT study. Int. J. Agric. Biol. Eng., 2016, 9(5), 166–176.
https:/doi.org/10.3965/j.ijabe.20160905.2559