Oil shale, the most important unconventional oil and gas reservoir resource, is characterized by large geological reserves, difficult development technology, and great development potential. Although it cannot be exploited in a large area due to cost issues, with the development and utilization of conventional oil and gas reservoir resources, it is the main direction of future oil exploitation. Based on the classification of in situ conversion technologies of oil shale electric heating into in situ conversion process technology, ElectrofracTM technology, geothermal fuel cell heating technology, high-voltage power frequency electric heating technology, and other electric heating technology, this paper summarizes the research progress on existing electric heating technologies to provide a reference for the engineering research and development of oil shale electric heating in situ mining technology.
1. Chen, B., Cai, J., Chen, X., Wu, D., Pan, Y. A review on oil shale in-situ mining technologies: opportunities and challenges. Oil Shale, 2024, 41(1), 1–25.
https://doi.org/10.3176/oil.2024.1.01
2. Salomonsson, G. The Ljungström in-situ method for shale-oil recovery. In: 2nd Oil Shale and Cannel Coal Conference, 1951. Institute of Petroleum, London, 260–280.
3. Ryan, R. C., Fowler, T. D., Beer, G. L., Nair, V. Shell’s in situ conversion process − from laboratory to field pilots. In: Oil Shale: A Solution to the Liquid Fuel Dilemma (Hartstein, A. M., Ogunsola, O., eds). ACS Publications, Washington D.C., 2010, 161–183.
https://doi.org/10.1021/bk-2010-1032.ch009
4. Sun, Y. H., Guo, W., Deng, S. H. Present situation and development trend of underground in-situ conversion and drilling technology of oil shale. Drilling Eng., 2021, 48(1), 57–67.
5. Pan, Y., Lou, X., Wang, Y., Yang, S., Li, Z., Zhang, X., Yan, Y., Xin, H. A review on the application of microwave absorbents in oil shale. Ind. Eng. Chem. Res., 2023, 62(46), 19402–19426.
https://doi.org/10.1021/acs.iecr.3c01683
6. Pan, Y., Zheng, L., Liu. Y., Wang, Y., Yang, S. A review of the current status of research on convection-heated in situ extraction of unconventional oil and gas resources (oil shale). J. Anal. Appl. Pyrol., 2023, 175(2), 106200.
https://doi.org/10.1016/j.jaap.2023.106200
7. Li, N., Wang, Y., Chen, F., Han, Y., Chen, W., Kon, K. Development status and prospects of in-situ conversion technology in oil shale. Spec. Oil Gas Reserv., 2022, 29(3), 1–8.
8. Yang, S., Wang, H., Zheng, J., Pan, Y., Ji, C. Comprehensive review: study on heating rate characteristics and coupling simulation of oil shale pyrolysis. J. Anal. Appl. Pyrol., 2023, 177(6), 106289.
https://doi.org/10.1016/j.jaap.2023.106289
9. Crawford, P. M., Biglarbigi, K., Dammer, A. R., Knaus, E. Advances in world oil shale production technologies. In: SPE Annual Technical Conference and Exhibition, September 21–24, 2008, Denver, USA. OnePetro, 2008.
https://doi.org/10.2118/116570-MS
10. Crawford, P., Killen, J. New challenges and directions in oil shale development technologies. In: Oil Shale: A Solution to the Liquid Fuel Dilemma (Hartstein, A. M., Ogunsola, O., eds). ACS Publications, Washington D.C., 2010, 21–60.
https://doi.org/10.1021/bk-2010-1032.ch002
11. Crawford, P., Knaus, E. Secure Fuels from Domestic Resources: The Continuing Evolution of America’s Oil Shale and Tar Sands Industries. A report by US Department of Energy, Washington D.C., USA, 2007.
12. Ma, Y. Z., Holditch, S. A. Unconventional Oil and Gas Resources Handbook: Evaluation and Development. Gulf Professional Publishing, 2015.
13. Yang, Y. Theoretical and Experimental Research of Oil Shale In-situ Pyrolysis by High Voltage-Power Frequency Electrical Heating Method. PhD thesis. Jilin University, China, 2014.
14. Li, J. S. Experimental Study on Resistance and Electrode Materials with Oil Shale In-situ Pyrolysis by High Voltage-Power Frequency Electric Heating. Master’s thesis. Jilin University, China, 2014.
15. Zhao, S., Lü, X. S., Li, Q., Sun, Y. Thermal-fluid coupling analysis of oil shale pyrolysis and displacement by heat-carrying supercritical carbon dioxide. Chem. Eng. J., 2020, 394(3), 125037.
https://doi.org/10.1016/j.cej.2020.125037
16. Han, X. X., Kulaots, I., Jiang, X. M., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126(6), 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045
17. Zhao, W. Z., Hu, S. Y., Hou, L. H., Yang, T., Li, X., Guo, B., Yang, Z. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet. Explor. Dev., 2020, 47(1), 1–11.
https://doi.org/10.1016/S1876-3804(20)60001-5
18. Bohacs, K. M. The devil in the details: what controls vertical and lateral variation of hydrocarbon source and shale-gas reservoir potential at millimeter to kilometer scales? Houston Geol. Soc. Bull., 2009.
19. Alstadt, K. N., Katti, K. S., Katti, D. R. Nanoscale morphology of kerogen and in situ nanomechanical properties of Green River oil shale. J. Nanomechanics Micromech., 2016, 6(1), 04015003.
https://doi.org/10.1061/(ASCE)NM.2153-5477.0000103
20. Jin, Z. J., Wang, G. P., Liu, G. X., Gao, B., Liu, Q., Wang, H., Liang, X., Wang, R. Research progress and key scientific issues of continental shale oil in China. Acta Pet. Sin., 2021, 42(7), 821–835.
21. Chen, Y. H., Zhu, Z. W., Zhang, L. Control actions of sedimentary environments and sedimentation rates on lacustrine oil shale distribution, an example of the oil shale in the Upper Triassic Yanchang Formation, southeastern Ordos Basin (NW China). Mar. Pet. Geol., 2019, 102, 508–520.
https://doi.org/10.1016/j.marpetgeo.2019.01.006
22. Zheng, S. Study on the Characteristics of Temperature Distribution and its Influence on the In Situ Heating Process for Oil Shale. Master’s thesis. Northeast Petroleum University, 2024.
23. Jin, J., Liu, J., Jiang, W., Wei, C., Zhang, X. Evolution of the anisotropic thermal conductivity of oil shale with temperature and its relationship with anisotropic pore structure evolution. Energies, 2022, 15(21), 8021.
https://doi.org/10.3390/en15218021
24. Yang, S., Yang, D., Kang, Z. Experimental investigation of the anisotropic evolution of tensile strength of oil shale under real-time high-temperature conditions. Nat. Resour. Res., 2021, 30(2–3), 2513–2528.
https://doi.org/10.1007/s11053-021-09848-y
25. Raja, M. A., Zhao, Y., Zhang, X., Li, C., Zhang, S. Practices for modeling oil shale pyrolysis and kinetics. Rev. Chem. Eng., 2017, 34(1), 21–42.
https://doi.org/10.1515/revce-2016-0038
26. Chang, Z. Study on the Pyrolysis Characteristics of Oil Shale Based on its Composition and Structure. Master’s thesis. China University of Mining and Technology, China, 2017.
27. Xiong, D., Ma, W., Zhang, M., Wu, C., Tuo, J. New method for the determination of kerogen type and the hydrocarbon potential. Nat. Gas Geosci., 2014, 25(6), 898–905.
28. Elgadi, M., Mahgoub, M. Applicability of using electrical downhole heaters in Sudanese oilfields, modeling supported. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, April 24–27, 2017, Dammam, Saudi Arabia. OnePetro, 2007.
https://doi.org/10.2118/188032-MS
29. Sandberg, C., Thomas, K., Penny, S. The use of coiled tubing for deployment of electrical heaters in downhole applications. In: SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, March 22–23, 2016, Houston, USA. OnePetro, 2016.
https://doi.org/10.2118/179095-MS
30. Ali, S. F. Heavy oil – evermore mobile. J. Pet. Sci. Eng., 2003, 37(1–2), 5–9.
https://doi.org/10.1016/S0920-4105(02)00307-8
31. Johannes, I., Kruusement, K., Veski, R. Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrolysis, 2007, 79(1–2), 183–190.
https://doi.org/10.1016/j.jaap.2006.12.001
32. Weber, G., Green, J. Guide to Oil Shale. National Conference of State Legislatures. Washington D.C., USA, 1981, 21.
33. Hascakir, B., Babadagli, T., Akin, S. Experimental and numerical simulation of oil recovery from oil shales by electrical heating. Energy Fuels, 2008, 22(6), 3976–3985.
https://doi.org/10.1021/ef800389v
34. Prats, M., Meurs, P. van. Method of Producing Fluidized Material from a Subterranean Formation. Patent US8104536B2, 1969-07-15.
35. Prats, M., Closmann, P. J., Ireson, A. T., Drinkard, G. Soluble-salt processes for in-situ recovery of hydrocarbons from oil shale. J. Pet. Technol., 1977, 29(9), 1078–1088.
https://doi.org/10.2118/6068-PA
36. Wang, Y. P., Wang, Y. W., Meng, X. L., Su, J. Z., Li, F. X., Li, Z. T. Enlightenment of American’s oil shale in-situ retorting technology. Oil Drill. Prod. Technol., 2013, 35(6), 55–59.
37. Brandt, A. R. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process. Environ. Sci. Technol., 2008, 42(19), 7489–7495.
https://doi.org/10.1021/es800531f
38. Pei, S. F., Wang, Y. Y., Zhang, L. A., Huang, L. J., Cui, G. D., Zhang, P. F., Ren, S. R. An innovative nitrogen injection assisted in-situ conversion process for oil shale recovery: mechanism and reservoir simulation study. J. Pet. Sci. Eng., 2018, 171, 507–515.
https://doi.org/10.1016/j.petrol.2018.07.071
39. Meng, X., Bian, J., Li, J., Ma, Z., Long, Q., Su, J. Porous aluminosilicates catalysts for low and medium matured shale oil in situ upgrading. Energy Sci. Eng., 2020, 8(8), 2859–2867.
https://doi.org/10.1002/ese3.704
40. Shen, C. Reservoir simulation study of an in-situ conversion pilot of Green-River oil shale. In: SPE Rocky Mountain Petroleum Technology Conference, April 14–16, 2009, Denver, USA. OnePetro, 2009.
https://doi.org/10.2118/123142-MS
41. Li, J., Tang, D., Xue, H., Zheng, D., Du, D. Discussion of oil shale in-situ conversion process in China. J. Southwest Pet. Univ. Sci. Technol. Ed., 2014, 36(1), 58–64.
42. He, J., Li, Y., Xiang, Z., Wang, Z., Hou, B., Huang, Z., Zhang, Q. Design of wellbore structure for oil shale in-situ mining. Sci. Technol. Eng., 2019, 19(20), 151–155.
43. Han, L. F., Li, X. X., Liu, X. F. Numerical simulation of temperature field in-situ modification of thin oil shale by electric heating. Sci. Technol. Eng., 2021, 21(20), 8522–8526.
44. Hou, L., Ma, W., Luo, X., Liu, J. Characteristics and quantitative models for hydrocarbon generation-retention-production of shale under ICP conditions: example from the Chang 7 member in the Ordos Basin. Fuel, 2020, 279, 118497.
https://doi.org/10.1016/j.fuel.2020.118497
45. Symington, W. A., Olgaard, D. L., Otten, G. A., Phillips, T. C., Thomas, M. M., Yeakel, J. D. ExxonMobil’s ElectrofracTM process for in situ oil shale conversion. In: 26th Oil Shale Symposium, October 16–20, 2006, Colorado School of Mines, Golden, Colorado.
46. Zhu, G. P., Yao, J., Sun, H., Zhang, M., Xie, M. J., Sun, Z. X., Lu, T. The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir. J. Nat. Gas Sci. Eng., 2016, 28, 305–316.
https://doi.org/10.1016/j.jngse.2015.11.051
47. Tanaka, P., Yeakel, J., Symington, W., Spiecker, P. M., Del Pico, M., Thomas, M. M., Sullivan, K. B., Stone, M. T. Plan to test ExxonMobil’s in situ oil shale technology on a proposed RD&D lease. In: 31st Oil Shale Symposium, October 17–19, 2011, Colorado School of Mines, Golden, Colorado.
48. Sullivan, N., Anyenya, G., Haun, B., Daubenspeck, M., Bonadies, J., Kerr, R., Fischer, B., Wright, A., Jones, G., Li, R., Wall, M., Forbes, A., Savage, M. In-ground operation of geothermic fuel cells for unconventional oil and gas recovery. J. Power Sources, 2016, 302, 402–409.
https://doi.org/10.1016/j.jpowsour.2015.10.093
49. Lee, K. J., Moridis, G. J., Ehlig-Economides, C. A. Numerical simulation of diverse thermal in situ upgrading processes for the hydrocarbon production from kerogen in oil shale reservoirs. Energy Explor. Exploit., 2017, 35(3), 315–337.
https://doi.org/10.1177/0144598716689354
50. Hazra, K. G., Lee, K. J., Economides, C. E., Moridis, G. J. Comparison of heating methods for in-situ oil shale extraction. In: IOR 2013 – 17th European Symposium on Improved Oil Recovery, April 16–18, 2013. European Association of Geoscientists & Engineers.
https://doi.org/10.3997/2214-4609.20142631
51. Anyenya, G. A., Braun, R. J., Lee, K. J., Sullivan, N. P., Newman, A. M. Design and dispatch optimization of a solid-oxide fuel cell assembly for unconventional oil and gas production. Optim. Eng., 2018, 19(4), 1037–1081.
https://doi.org/10.1007/s11081-018-9400-y
52. Sun, Y. H., Lopatin, V., Han, W., Martemyannov, S., Li, Q., Bukharkin, A., Yang, Y., Yuan, Z., Liu, B., Guo, W., Gao, K. Method for Heating Oil Shale Subsurface In-situ. Patent CN103174406A, 2013-06-26.
53. Michaels, J. A., Wood, D. R., Froeter, P. J., Huang, W., Sievers, D. J., Li, X. Effect of perforation on the thermal and electrical breakdown of self-rolled-up nanomembrane structures. Adv. Mater. Interfaces, 2019, 6(21), 1901022.
https://doi.org/10.1002/admi.201901022
54. Christensen, L. R., Hassager, O., Skov, A. L. Electro-thermal model of thermal breakdown in multilayered dielectric elastomers. AIChE J., 2019, 65(2), 859–864.
https://doi.org/10.1002/aic.16478
55. Sun, Y. H., Liu, S. C., Li, Q., Lü, X. S. Experimental study on the factors of the oil shale thermal breakdown in high-voltage power frequency electric heating technology. Energies, 2022, 15(19), 7181.
https://doi.org/10.3390/en15197181
56. Li, J. S., Sun, Y. H., Guo, W., Li, Q., Deng, S. H. Laboratory test of oil shale pyrolysis by high voltage-power frequency electric heating and the analysis on oxygen driving effect. Drill. Eng., 2018, 45(5), 13–17.
57. Liu, S. Study on the Mechanism of Internal and External Factors in the Breakdown of High Voltage Power Frequency Electric Heating in Oil Shale. Master’s thesis. Jilin University, China, 2023.