ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Oil shale pyrolysis and electric heating in situ mining technology improvements; pp. 257–272
PDF | https://doi.org/10.3176/oil.2024.4.02

Authors
Yi Pan, Xukun Fan, Shuangchun Yang, Zhiyong Hu, Yulin Yan
Abstract

In the engineering of oil shale, in situ extraction technology using electric heating involves heating the oil shale reservoir with an electric heater at high temperatures to convert the solid kerogen in oil shale into liquid hydrocarbons. These liquid hydrocarbons are then extracted from underground using traditional oil and gas drilling and production techniques. This paper discusses the pyrolysis mechanism, pore evolution, mineral transformation, and classification of electric heating technology for oil shale. It also summarizes research progress aimed at improving in situ extraction technology for oil shale, providing valuable insights for further research and development in this field.

References

1. Li, Y., Chiu, Y.-H., Lin, T.-Y. Research on new and traditional energy sources in OECD countries. Int. J. Environ. Res. Public Health, 2019, 16(7), 1122.
https://doi.org/10.3390/ijerph16071122

2. Wang, L., Liu, K., Han, B., Shi, H. Accelerated adjustment to a changing international oil market. Int. Petrol. Econ., 2024, 32(5), 71–77.

3. Jia, C. Z., Zheng, M., Zhang, Y. F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev., 2012, 39(2), 139–146.
https://doi.org/10.1016/S1876-3804(12)60026-3

4. Taheri-Shakib, J., Kantzas, A. A comprehensive review of microwave application on the oil shale: prospects for shale oil production. Fuel, 2021, 305, 121519.
https://doi.org/10.1016/j.fuel.2021.121519

5. Zhang, Z. J., Chai, J., Zhang, H. Y., Guo, L., Zhan, J.-H. Structural model of Longkou oil shale kerogen and the evolution process under steam pyrolysis based on ReaxFF molecular dynamics simulation. Energy Sources A: Recovery, Util. Environ. Eff., 2021, 43(2), 252–265.
https://doi.org/10.1080/15567036.2019.1624879

6. Crawford, P. M., Killen, J. C. New challenges and directions in oil shale development technologies. In: Oil shale: A Solution to the Liquid Fuel Dilemma (Hartstein, A. M., Ogunsola, O., eds). ACS Publications, Washington, 2010, 21–60.
https://doi.org/10.1021/bk-2010-1032.ch002

7. Zafar, A., Su, Y., Wang, W., Alam, S. G., Khan, D., Yasir, M., Alrassas, A., Ahmad, I. Heat dissipation modeling of in-situ conversion process of oil shale. Open J. Yangtze Oil Gas, 2020, 5(2), 46–53.
https://doi.org/10.4236/ojogas.2020.52005

8. Song, X., Zhang, C., Shi, Y., Li, G. Production performance of oil shale in-situ conversion with multilateral wells. Energy, 2019, 189, 116145.
https://doi.org/10.1016/j.energy.2019.116145

9. Wang, Y., Wang, Y., Meng, X., Su, J., Li, F., Li, Z. Enlightenment of American’s oil shale in-situ retorting technology. Oil Drill. Prod. Technol., 2014, 35(6), 55–59.

10. World Energy Council. Survey of Energy Resources. London, UK, 2010.

11. Zhen, S. Study on the Characteristics of Temperature Distribution and its Influence on the In Situ Heating Process for Oil Shale. PhD thesis. Northeast Petroleum University, China, 2024.

12. Lü, X. S., Sun, Y. H., Lu, T., Bai, F., Viljanen, M. An efficient and general analytical approach to modelling pyrolysis kinetics of oil shale. Fuel, 2014, 135, 182–187.
https://doi.org/10.1016/j.fuel.2014.06.009

13. He, L., Ma, Y., Yue, C. T., Wu, J., Li, S. Kinetic modeling of Kukersite oil shale pyrolysis with thermal bitumen as an intermediate. Fuel, 2020, 279, 118371.
https://doi.org/10.1016/j.fuel.2020.118371

14. Lei, J., Pan, B. Z., Guo, Y. H., Fan, Y. F., Xue, L. F., Deng, S. H., Zhang, L. H., Ruhan, A. A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods. Energy, 2021, 227, 120359.
https://doi.org/10.1016/j.energy.2021.120359

15. Li, Q. Simulation of Temperature Field and Experiment of In Situ Oil Shale Pyrolysis. PhD thesis. Jilin University, China, 2012.

16. Han, X. X., Kulaots, I., Jiang, X. M., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045

17. Saif, T., Lin, Q. Y., Butcher, A. R., Bijeljic, B., Blunt, M. J. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Appl. Energy, 2017, 202, 628–647.
https://doi.org/10.1016/j.apenergy.2017.05.039

18. Saif, T., Lin, Q. Y., Singh, K., Bijeljic, B., Blunt, M. J. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. Geophys. Res. Lett., 2016, 43(13), 6799–6807.
https://doi.org/10.1002/2016GL069279

19. Saif, T., Lin, Q. Y., Bijeljic, B., Blunt, M. J. Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197, 562–574.
https://doi.org/10.1016/j.fuel.2017.02.030

20. Tiwari, P., Deo, M., Lin, C., Miller, J. D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107, 547–554.
https://doi.org/10.1016/j.fuel.2013.01.006

21. He, W. T., Sun, Y. H., Shan, X. L. Organic matter evolution in pyrolysis experiments of oil shale under high pressure: guidance for in situ conversion of oil shale in the Songliao Basin. J. Anal. Appl. Pyrolysis, 2021, 155, 105091.
https://doi.org/10.1016/j.jaap.2021.105091

22. Bai, F. T., Sun, Y. H., Liu, Y. M., Guo, M. G. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1–8.
https://doi.org/10.1016/j.fuel.2016.09.012

23. Kang, Z. Q., Yang, D., Zhao, Y. S., Hu, Y. Q. Thermal cracking and corresponding permeability of Fushun oil shale. Oil Shale, 2011, 28(2), 273–283.
https://doi.org/10.3176/oil.2011.2.02

24. You, Y., Wang, X., Han, X., Jiang, X. Kerogen pyrolysis model based on its chemical structure for predicting product evolution. Fuel, 2019, 246, 149–159.
https://doi.org/10.1016/j.fuel.2019.02.075

25. Crawford, P. M., Biglarbigi, K., Dammer, A. R., Knaus, E. Advances in world oil shale production technologies. In: SPE Annual Technical Conference and Exhibition, September 21–24, 2008, Denver, USA. OnePetro, 2008.
https://doi.org/10.2118/116570-MS

26. Prats, M., Meurs, P. van. Method of Producing Fluidized Material from a Subterranean Formation. Patent US8104536B2, 1969-07-15.

27. Prats, M., Closmann, P. J., Ireson, A. T., Drinkard, G. Soluble-salt processes for in-situ recovery of hydrocarbons from oil shale. J. Pet. Technol., 1977, 29(9), 1078–1088.
https://doi.org/10.2118/6068-PA

28. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in situ conversion technology. Appl. Energy, 2020, 269, 115121.
https://doi.org/10.1016/j.apenergy.2020.115121

29. Tanaka, P., Yeakel, J., Symington, W., Spiecker, P. M., Del Pico, M., Thomas, M. M., Sullivan, K. B., Stone, M. T. Plan to test ExxonMobil’s in situ oil shale technology on a proposed RD&D lease. In: 31st Oil Shale Symposium, October 17–19, 2011, Colorado School of Mines, Golden, Colorado.

30. Michaels, J. A., Wood, D. R., Froeter, P. J., Huang, W., Sievers, D. J., Li, X. Effect of perforation on the thermal and electrical breakdown of self-rolled-up nanomembrane structures. Adv. Mater. Interfaces, 2019, 6(21), 1901022.
https://doi.org/10.1002/admi.201901022

31. Li, J. S., Sun, Y. H., Guo, W., Li, Q., Deng, S. H. Laboratory test of oil shale pyrolysis by high voltage-power frequency electric heating and the analysis on oxygen driving effect. Drill. Eng., 2018, 45(5), 13–17.

32. Wang, J. Numerical Simulation of Temperature Field for the In-situ Upgrading of Oil Shale. Master’s thesis. Jilin University, China, 2011.

33. Fan, Y. Q., Durlofsky, L. J., Tchelepi, H. A. Numerical simulation of the in-situ upgrading of oil shale. SPE J., 2010, 15(2), 368–381.
https://doi.org/10.2118/118958-PA

34. Xia, T. Research on In-situ Electrical Heating Development of Oil Shale Reservoir by Numerical Simulation. PhD thesis. China University of Petroleum, China, 2015.

35. Li, X. X. Numerical Simulation of Temperature Field In Situ Modified by Electric Heating of Oil Shale. PhD thesis. Northeast Petroleum University, China, 2021.

36. Pei, S. F., Wang, Y. Y., Zhang, L., Huang, L. J., Cui, G. D., Zhang, P. F., Ren, S. R. An innovative nitrogen injection assisted in-situ conversion process for oil shale recovery: mechanism and reservoir simulation study. J. Pet. Sci. Eng., 2018, 171, 507–515.
https://doi.org/10.1016/j.petrol.2018.07.071

37. Meng, X. L., Bian, J. J., Li, J., Ma, Z. L., Long, Q. L, Su, J. Z. Porous aluminosilicates catalysts for low and medium matured shale oil in situ upgrading. Energy Sci. Eng., 2020, 8(8), 2859–2867.
https://doi.org/10.1002/ese3.704

38. Sun, C. L., Wang, Y., Shao, H. L., An, J. N., Zhao, Y. D., Yang, Q. R. Numerical simulation of the development of oil shale in situ electrical temperature field. J. Liaoning Univ. Pet. Chem. Technol., 2015, 35(4), 40–43.

39. Yue, C. T., Liu, Y., Ma, Y., Li, S. Y., He, J. L., Qiu, D. K. Influence of retorting conditions on the pyrolysis of Yaojie oil shale. Oil Shale, 2014, 31(1), 66–78.
https://doi.org/10.3176/oil.2014.1.07

40. Wang, Q., Sun, B., Hu, A., Bai, J., Li, S. Pyrolysis characteristics of Huadian oil shales. Oil Shale, 2007, 24(2), 147–157.
https://doi.org/10.3176/oil.2007.2.05

41. Vinegar, H. J., Bass, R. M., Hunsucker, B. Heat Sources with Conductive Material for In Situ Thermal Processing of an Oil Shale Formation. Patent US20040211554A1, 2005-08-16.

42. Hoekstra, E., Swaaij, W. P. van, Kersten, S. R. A., Hogendoorn, K. J. A. Fast pyrolysis in a novel wire-mesh reactor: design and initial results. Chem. Eng. J., 2012, 191, 45–58.
https://doi.org/10.1016/j.cej.2012.01.117

43. Zeng, G. Y., Wang, C. X., Yang, H. Simulation and design optimization of temperature distribution of in-situ heating electric heater for oil shale. Oil Drill. Prod. Technol., 2014, 36(5), 84–89.

44. Sandberg, C., Thomas, K., Penny, S. The use of coiled tubing for deployment of electrical heaters in downhole applications. In: SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, March 22–23, 2016, Houston, USA. OnePetro, 2016.
https://doi.org/10.2118/179095-MS

45. Hao, Y. A composite cementing material with high-temperature and high-pressure resistance and low elasticity for in-situ heating of oil shale. Chem. Technol. Fuels Oils, 2016, 52, 103–110.
https://doi.org/10.1007/s10553-016-0679-0

46. Gao, X. Q., Yang, H., Xiong, F. S., Lv, J. G. Temperature field and thermal stress of downhole system for in situ heating on oil shale. Fault-Block Oil Gas Field, 2014, 21(3), 373–377.

47. Lei, Y.-G., He, Y.-L., Chu, P., Li, R. Design and optimization of heat exchangers with helical baffles. Chem. Eng. Sci., 2008, 63(17), 4386–4395.
https://doi.org/10.1016/j.ces.2008.05.044

48. Wang, Q.-W., Chen, G.-D., Xu, J., Ji, Y.-P. Second-law thermodynamic compari-son and maximal velocity ratio design of shell-and-tube heat exchangers with continuous helical baffles. J. Heat Transf., 2010, 132(10), 101801.
https://doi.org/10.1115/1.4001755

49. Zhang, J.-F., Li, B., Huang, W.-J., Lei, Y.-G., He, Y.-L., Tao, W.-Q. Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles. Chem. Eng. Sci., 2009, 64(8), 1643–1653.
https://doi.org/10.1016/j.ces.2008.12.018

50. Xiao, X., Zhang, L., Li, X., Jian, B., Yang, X., Xia, Y. Numerical investigation of helical baffles heat exchanger with different Prandtl number fluids. Int. J. Heat Mass Transf., 2013, 63, 434–444.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.001

51. Yang, J.-F., Zeng, M., Wang, Q.-W. Effects of sealing strips on shell-side flow and heat transfer performance of a heat exchanger with helical baffles. Appl. Therm. Eng., 2014, 64(1–2), 117–128.
https://doi.org/10.1016/j.applthermaleng.2013.11.064

52. Wang, S., Wen, J., Yang, H., Xue, Y., Tuo, H. Experimental investigation on heat transfer enhancement of a heat exchanger with helical baffles through blockage of triangle leakage zones. Appl. Therm. Eng., 2014, 67(1–2), 122–130.
https://doi.org/10.1016/j.applthermaleng.2014.03.017

53. Dong, C., Chen, Y.-P., Wu, J.-F. Flow and heat transfer performances of helical baffle heat exchangers with different baffle configurations. Appl. Therm. Eng., 2015, 80, 328–338.
https://doi.org/10.1016/j.applthermaleng.2015.01.070

54. Chen, Y.-P., Sheng, Y.-J., Dong, C., Wu, J.-F. Numerical simulation on flow field in circumferential overlap trisection helical baffle heat exchanger. Appl. Therm. Eng., 2013, 50(1), 1035–1043.
https://doi.org/10.1016/j.applthermaleng.2012.07.031

55. Dong, C., Chen, Y., Wu, J. Performances of helical baffle heat exchangers with different baffle assembly configurations. Can. J. Chem. Eng., 2015, 93(8), 1500–1508.
https://doi.org/10.1002/cjce.22237

56. Dong, C., Chen, Y.-P., Wu, J.-F. Influence of baffle configurations on flow and heat transfer characteristics of trisection helical baffle heat exchangers. Energy Convers. Manag., 2014, 88, 251–258.
https://doi.org/10.1016/j.enconman.2014.08.005

57. Dong, C., Chen, Y., Wu, J. Comparison of heat transfer performances of helix baffled heat exchangers with different baffle configurations. Chin. J. Chem. Eng., 2015, 23(1), 255–261.
https://doi.org/10.1016/j.cjche.2014.10.014

58. Yang, J.-F., Zeng, M., Wang, Q.-W. Numerical investigation on combined single shell-pass shell-and-tube heat exchanger with two-layer continuous helical baffles. Int. J. Heat Mass Transf., 2015, 84, 103–113.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.042

59. El Maakoul, A., Laknizi, A., Saadeddine, S., El Metoui, M., Zaite, A., Meziane, M., Ben Abdellah, A. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles. Appl. Therm. Eng., 2016, 109(A), 175–185.
https://doi.org/10.1016/j.applthermaleng.2016.08.067

60. Dong, C., Li, D., Zheng, Y., Li, G., Suo, Y., Chen, Y. An efficient and low resistant circumferential overlap trisection helical baffle heat exchanger with folded baffles. Energy Convers. Manag., 2016, 113, 143–152.
https://doi.org/10.1016/j.enconman.2016.01.055

61. Yang, J.-F., Lin, Y.-S., Ke, H.-B., Zeng, M., Wang, Q.-W. Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles. Energy, 2016, 115, 1572–1579.
https://doi.org/10.1016/j.energy.2016.05.090

62. Chen, Y., Cao, R. B., Dong, C., Wu, J. F., Wang, M. C. Numerical simulation on the performance of trisection helical baffle heat exchangers with small baffle incline angles. Numer. Heat Transf.; A: Appl., 2016, 69(2), 180–194.
https://doi.org/10.1080/10407782.2015.1069663

63. Yang, S., Chen, Y., Wu, J., Gu, H. Performance simulation on unilateral ladder type helical baffle heat exchanger in half cylindrical space. Energy Convers. Manag., 2017, 150, 134–147.
https://doi.org/10.1016/j.enconman.2017.07.062

64. Gu, H., Chen, Y., Wu, J., Yang, S. Numerical study on performances of small incline angle helical baffle electric heaters with axial separation. Appl. Therm. Eng., 2017, 126, 963–975.
https://doi.org/10.1016/j.applthermaleng.2017.07.171

65. Guo, W., Wang, Z. D., Sun, Z. J., Sun, Y. H., Lü, X. S., Deng, S. H., Qu, L., Yuan, W., Li, Q. Experimental investigation on performance of downhole electric heaters with continuous helical baffles used in oil shale in situ pyrolysis. Appl. Therm. Eng., 2019, 147, 1024–1035.
https://doi.org/10.1016/j.applthermaleng.2018.11.013

66. Wang, Z. D., Lü, X. S., Li, Q., Sun, Y. H., Wang, Y., Deng, S. H., Guo, W. Downhole electric heater with high heating efficiency for oil shale exploitation based on a double-shell structure. Energy, 2020, 211, 118539.
https://doi.org/10.1016/j.energy.2020.118539

67. Shinde, S., Chavan, U. Numerical and experimental analysis on shell side thermo-hydraulic performance of shell and tube heat exchanger with continuous helical FRP baffles. Therm. Sci. Eng. Prog., 2018, 5, 158–171.
https://doi.org/10.1016/j.tsep.2017.11.006

68. Cao, X., Du, T., Liu, Z., Zhai, H., Duan, Z. Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers. Int. J. Heat Mass Transf., 2019, 142, 118437.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118437

69. Chen, J., Lu, X., Wang, Q., Zeng, M. Experimental investigation on thermal-hydraulic performance of a novel shell-and-tube heat exchanger with unilateral ladder type helical baffles. Appl. Therm. Eng., 2019, 161(9), 114099.
https://doi.org/10.1016/j.applthermaleng.2019.114099

70. Chen, Y., Tang, H., Wu, J., Gu, H., Yang, S. Performance comparison of heat exchangers using sextant/trisection helical baffles and segmental ones. Chin. J. Chem. Eng., 2019, 27(12), 2892–2899.
https://doi.org/10.1016/j.cjche.2019.07.006

Back to Issue