The extremely thick dark mudstone of the Permian Linxi Formation in the Kundu-Taohaiyingzi area of northeastern China is a promising potential area for shale gas prospecting in the periphery of the Songliao Basin. This study involved a geological field survey, outcrop sample collection, and comprehensive geochemical analysis to conduct an in-depth analysis of the organic matter enrichment and hydrocarbon generation potential of the dark mudstone of the target zone, using organic petrology and organic geochemistry. The results show that the thermal maturity of the dark mudstone of the Linxi Formation is in the mature to high-mature stage. The organic matter is dominated by type II kerogen and supplemented by type III kerogen, and the average total organic carbon content is 0.76%, classifying it as a medium-good source rock. The main peak of carbon numbers is primarily distributed between nC17 and nC19, with a smaller amount at nC21. The distribution of n-alkanes follows a pre-peak pattern characterized by medium and low carbon numbers, suggesting that the organic matter originates from aquatic plants, bacteria, and algae. Combined with the fact that the ratios of pristine and phytane (Pr/Ph) are mainly distributed in the range of 0.99–1.33, the sedimentary environment is a weakly reduced to weakly oxidized lacustrine bay. The systematic analysis of the source rocks of the Upper Permian Linxi Formation in the Kundu-Taohaiyingzi area indicates favorable prospects for shale gas exploration. Utilizing a comprehensive superposition method of geological information, this article identified the Yamen Gacha–Saihan Tala area as a potential area for shale gas exploration.
1. Wu, Z., Peng, S., Du, W. Coal-measure source rock characteristics and burial evolution history in the Shisanjianfang Area, Tuha Basin. Arabian J. Geosci., 2016, 9(5), 417.
https://doi.org/10.1007/s12517-016-2438-2
2. Sun, P., Li, W., Liu, Z., Niu, D., Wu, X., Tao, L., Wang, Z., Luan, Z. Selection of favourable targets for the in-situ conversion of continental oil shale in China. Oil Shale, 2023, 40(3), 177–193.
https://doi.org/10.3176/oil.2023.3.01
3. Maravelis, A. G., Chamilaki, E., Pasadakis, N., Vassiliou, A., Zelilidis, A. Organic geochemical characteristics and paleodepositional conditions of an Upper Carboniferous mud-rich succession (Yagon Siltstone): Myall Trough, southeast Australia. J. Pet. Sci. Eng., 2017, 158, 322–335.
https://doi.org/10.1016/j.petrol.2017.08.065
4. Mi, S., Guo, Q., Zhang, Q., Wang, J. Classification and potential of continental shale oil resources in China and resource evaluation methods and criteria. Oil Shale, 2023, 40(4), 283–320.
https://doi.org/10.3176/oil.2023.4.02
5. Mou, C. L., Wang, X. P., Wang, Q. Y, Ge, X. Y., Zan, B., Zhou, K. K., Chen, X. W., Liang, E. Lithofacies Paleogeography and Geological Survey of Shale Gas. Springer, Singapore, 2023.
https://doi.org/10.1007/978-981-19-8861-5
6. Lou, R., Dong, Q., Nie, H. Exploration prospects of shale gas resources in the Upper Permian Linxi Formation in the Suolun-Linxi Area, NE China. Energy Fuels, 2017, 31(2), 1100–1107.
https://doi.org/10.1021/acs.energyfuels.6b01882
7. He, W., Shan, X., Sun, Y., Cao, H., Zheng, S., Su, S., Kang, S. The oil shale formation mechanism of the Songliao Basin Nenjiang Formation triggered by marine transgression and oceanic anoxic events 3. Oil Shale, 2021, 38(2), 89–118.
https://doi.org/10.3176/oil.2021.2.01
8. Lin, F., Qi, L., Zhang, N., Guo, Z. An ongoing lithospheric dripping process beneath northeast China and its impact on intraplate volcanism. Geology, 2024, 52(6), 435–440.
https://doi.org/10.1130/g51861.1
9. Feng, Z., Jia, C. Z., Xie, X. N., Zhang, S., Feng, Z. H., Cross, T. A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China. Basin Res., 2010, 22(1), 79–95.
https://doi.org/10.1111/j.1365-2117.2009.00445.x
10. Zhang, J., Bian, X. F., Su, F. Research on the hydrocarbon generation potential of the Permian Linxi Formation in the Lu D1 well in the Zharut area of Inner Mongolia. J. Pet. Nat. Gas., 2013, 35, 63–67 (in Chinese with English abstract).
11. Su, F., Zhang, H. H., Zhang, J. Research on the hydrocarbon generation potential of the Permian Linxi Formation in the Tao D1 well in the Tao Haiyingzi area. J. Yangtze Univ., 2016, 13, 19–23 (in Chinese with English abstract).
12. Hu, X., Zhang, X., Xie, J., Cao, H., Zheng, X., Zhao, Z., Cao, J., Pu, Q., Li, Z., Zhou, L. Sedimentary characteristics and hydrocarbon-generation potential of the Permian Pingdiquan Formation in Dongdaohaizi Sag, Junggar Basin, northwest China. ACS Omega, 2023, 8(39), 35653–35669.
https://doi.org/10.1021/acsomega.3c01889
13. Sun, L., Chen, S. W., Zhang, J., Su, F., Bian, X. F., Zhang, H. H. Evaluation on the hydrocarbon generation potential of Upper Permian Linxi Formation in western slope of Songliao Basin: evidence from JBD-2 well. Geol. Resour., 2021, 30(3), 333–340 (in Chinese with English abstract).
14. Li, F., Zhang, C., Xue, H., Huang, W., Wang, K., Chen, Y., Zhou, Y. Evaluation of hydrocarbon generation potential of Laiyang Formation source rocks in Ri-Qing-Wei Basin, eastern Shandong. Energies, 2022, 15(20), 7549.
https://doi.org/10.3390/en15207549
15. Liang, C., Liu, Y., Zheng, C., Li, W., Neubauer, F., Zhang, Q. Macro- and microstructural, textural fabrics and deformation mechanism of calcite mylonites from Xar Moron-Changchun dextral shear zone, northeast China. Acta Geol. Sin. Engl. Ed., 2019, 93(5), 1477–1499.
https://doi.org/10.1111/1755-6724.14357
16. Han, G., Liu, Y., Neubauer, F., Genser, J., Zou, Y., Li, W., Liang, C. Characteristics, timing, and offsets of the middle-southern segment of the western boundary strike-slip fault of the Songliao Basin in northeast China. Sci. China: Earth Sci., 2012, 55(3), 464–475.
https://doi.org/10.1007/s11430-012-4362-y
17. Ren, J., Jin, J., Xiang, B., Ma, W., Zhou, N., Liao, J. Differences and genesis of shale oil properties between the upper and lower sections of the Lucaogou Formation in the Jimsar Sag. IOP Conf. Ser.: Earth Environ. Sci., 2019, 360(1), 012032.
http://dx.doi.org/10.1088/1755-1315/360/1/012032
18. Du, J., Zhao, Y., Wang, Q., Yu, Y., Xiao, H., Xie, X., Du, Y., Su, Z. Geochemical characteristics and resource potential analysis of Chang 7 organic-rich black shale in the Ordos Basin. Geol. Mag., 2018, 156(7), 1131–1140.
https://doi.org/10.1017/S0016756818000444
19. Shi, Y., Shi, S., Liu, Z., Liu, J., Ju, N., You, H., Zhang, Z., Zhao, C. Petrogenesis of the late Early Palaeozoic adakitic granitoids in the southern margin of the Songliao Basin, NE China: implications for the subduction of the Palaeo-Asian Ocean. Geol. J., 2018, 54(6), 3821–3839.
https://doi.org/10.1002/gj.3377
20. Chen, C., Ren, Y.-S., Zhao, H.-L., Zou, X.-T., Yang, Q., Hu, Z.-C. Permian age of the Wudaogou Group in eastern Yanbian: detrital zircon U–Pb constraints on the closure of the Palaeo-Asian Ocean in northeast China. Int. Geol. Rev., 2014, 56(14), 1754–1768.
https://doi.org/10.1080/00206814.2014.956348
21. Ren, S. M., Qiao, D. W., Zhang, X. Z. Research progress on strategic selection areas of Upper Paleozoic oil and gas resources in the Songliao Basin and its periphery. Geol. Bull., 2011, 101, 197–204 (in Chinese with English abstract).
22. Zhong, M. S., Lu, D. L. Petrochemical characteristics and sedimentary structural environment of the Linxi Formation in the Suolun area of the middle section of the Greater Hinggan Range. Geol. Surv. China, 2022, 9, 89–96 (in Chinese with English abstract).
23. Li, L., Hou, Q., Huang, D., Wang, X. Early Permian granitic magmatism in middle part of the northern margin of the North China Craton: petrogenesis, source, and tectonic setting. Minerals, 2021, 11(2), 99.
https://doi.org/10.3390/min11020099
24. Zhang, J., Xu, X., Bai, J., Chen, S., Liu, W., Li, Y. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression, Songliao Basin, NE China. Pet. Explor. Dev., 2022, 49(3), 502–515.
https://doi.org/10.1016/S1876-3804(22)60042-9
25. Hou, L., Huang, H., Yang, C., Ma, W. Experimental simulation of hydrocarbon expulsion in semi-open systems from variable organic richness source rocks. ACS Omega, 2021, 6(22), 14664–14676.
https://doi.org/10.1021/acsomega.1c01800
26. Xu, H., Xie, Q., Wang, S., Yu, S. Organic geochemical characteristics and gas prospectivity of Permian source rocks in western margin of Songliao Basin, northeastern China. J. Pet. Sci. Eng., 2021, 205(8), 108863.
https://doi.org/10.1016/j.petrol.2021.108863
27. Wang, L., Zhang, Y., Xing, E., Peng, Y., Yu, D. Distribution of trace elements, Sr-C isotopes, and sedimentary characteristics as paleoenvironmental indicator of the Late Permian Linxi Formation in the Linxi Area, eastern Inner Mongolia. J. Chem., 2020, 1, 1–17.
https://doi.org/10.1155/2020/7027631
28. Wang, X., Ren, Y.-S., Bo, J.-W., Zhao, D.-S. Provenance, tectonic setting and mineralization significance in the Linxi Formation, eastern Inner Mongolia, NE China. Geochem.: Explor. Environ. Anal., 2019, 20(1), 50–67.
https://doi.org/10.1144/geochem2019-018
29. Jansonius, J. Palynology of Permian and Triassic Sediments, Peace River Area, Western Canada. Nägele u. Obermiller, Stuttgart, 1962, 35–98.
30. Qu, T., Huang, Z., Li, T., Yang, Y., Wang, B., Wang, R. Sedimentology and geochemistry of Eocene source rocks in the East China Sea: controls on hydrocarbon generation and source rock preservation. J. Asian Earth Sci., 2023, 255, 105770.
https://doi.org/10.1016/j.jseaes.2023.105770
31. He, X., Lu, J., Li, S., Li, X., Li, X., Chen, S., Li, Y., He, Q., Zhao, L., Ma, Z. Geochemical characteristics and hydrocarbon expulsion efficiency of different types of shale: taking Chang 7 Member and Shanxi Formation in Ordos Basin, China, as examples. J. Energy Eng., 2023, 149(5).
https://doi.org/10.1061/JLEED9.EYENG-4854
32. Qu, Y., Tao, H., Ma, D., Wu, T., Qiu, J. Biomarker characteristics and geological significance of middle and upper Permian source rocks in the southeastern Junggar Basin. Pet. Sci. Technol., 2019, 37(19), 2066–2080.
https://doi.org/10.1080/10916466.2019.1615950
33. Yang, Z., Li, Q., Qi, X., Yang, D. A new possible giant hydrocarbon generated formation: the Upper Triassic source rock in southwestern Junggar Basin, NW China. Mar. Pet. Geol., 2017, 88, 575–586.
https://doi.org/10.1016/j.marpetgeo.2017.09.007
34. Feng, Z., Liu, D., Huang, S., Gong, D., Peng, W. Geochemical characteristics and genesis of natural gas in the Yan’an gas field, Ordos Basin, China. Org. Geochem., 2016, 102, 67–76.
https://doi.org/10.1016/j.orggeochem.2016.10.008
35. García García, N., Feranec, R. S., Arsuaga, J. L., Bermúdez de Castro, J. M., Carbonell, E. Isotopic analysis of the ecology of herbivores and carnivores from the Middle Pleistocene deposits of the Sierra de Atapuerca, northern Spain. J. Archaeol. Sci., 2009, 36(5), 1142–1151.
https://doi.org/10.1016/j.jas.2008.12.018
36. Wang, D., Mao, Q., Liu, K., Lyu, D., Liu, H., Yin, Y., Hu, H. Genetic mechanism of Carboniferous-Permian coal measures siderite nodules in an epicontinental sea basin – an example from the Zibo area in North China. Ore Geol. Rev., 2023, 154, 105254.
https://doi.org/10.1016/j.oregeorev.2022.105254
37. Gao, G., Ren, J., Yang, S., Xiang, B., Zhang, W. Characteristics and origin of solid bitumen in glutenites: a case study from the Baikouquan Formation reservoirs of the Mahu Sag in the Junggar Basin, China. Energy Fuels, 2017, 31(12), 13179–13189.
https://doi.org/10.1021/acs.energyfuels.7b01912
38. Lu, J. C., Wei, X. Y., Wei, J. S. Characteristics and influencing factors of kerogen isotopes in Carboniferous-Permian source rocks in Ejina Banner and adjacent areas in western Inner Mongolia. Geol. Bull., 20l0, 29, 384–391 (in Chinese with English abstract).
39. Gong, F. H., Chen, S. W., Zhang, J. Study on the thermal evolution degree of Upper Permian Linxi Formation mudstone in Taohaiyingzi area, Inner Mongolia. Geol. Resour., 2012, 21, 129–133 (in Chinese with English abstract).
40. Xie, Z., Wei, G., Zhang, J., Yang, W., Zhang, L., Wang, Z., Zhao, J. Characteristics of source rocks of the Datangpo Fm, Nanhua System, at the southeastern margin of Sichuan Basin and their significance to oil and gas exploration. Nat. Gas Ind. B, 2017, 4(6), 405–414.
https://doi.org/10.1016/j.ngib.2017.09.011
41. Dean, R. A., Whitehead, E. V. The occurrence of phytane in petroleum. Tetrahedron Lett., 1961, 2(21), 768–770.
https://doi.org/10.1016/S0040-4039(01)99264-0
42. Wang, C., Liu, Y., Liu, H., Zhu, L., Shi, Q. Geochemical significance of the relative enrichment of pristane and the negative excursion of δ13CPr across the Permian-Triassic Boundary at Meishan, China. Chin. Sci. Bull., 2005, 50(19), 2213–2225.
https://doi.org/10.1007/BF03182673
43. Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bull., 1985, 69(8), 1241–1254.
http://dx.doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D
44. Shen, Y., Qin, Y., Cui, M., Xie, G., Guo, Y., Qu, Z., Yang, T., Yang, L. Geochemical characteristics and sedimentary control of Pinghu Formation (Eocene) coal-bearing source rocks in Xihu Depression, East China Sea Basin. Acta Geol. Sin. Engl. Ed., 2021, 95(1), 91–104.
https://doi.org/10.1111/1755-6724.14624
45. Qu, Y., Shan, X., Du, T., Du, X., Zhao, R. Molecular organic geochemical characteristics and coal gas potential evaluation of Mesozoic coal seams in the Western Great Khingan Mountains. Acta Geol. Sin. Engl. Ed., 2020, 94(2), 409–417.
https://doi.org/10.1111/1755-6724.14297
46. Miao, H., Wang, Y., Zhao, S., Guo, J., Ni, X., Gong, X., Zhang, Y., Li, J. Geochemistry and organic petrology of Middle Permian source rocks in Taibei Sag, Turpan-Hami Basin, China: implication for organic matter enrichment. ACS Omega, 2021, 6(47), 31578–31594.
https://doi.org/10.1021/acsomega.1c04061
47. Nelson, C. R., Li, W., Lazar, I. M., Larson, K. H., Malik, A., Lee, M. L. Geochemical significance of n-alkane compositional-trait variations in coals. Energy Fuels, 1998, 12(2), 277–283.
https://doi.org/10.1021/ef970112k
48. Zheng, Y. J., Huang, X., Sun, Y. W. Division and correlation of carboniferous Permian system in Songliao Basin and its periphery. Geo. Resour., 2018, 27(1), 1–15 (in Chinese with English abstract).
49. Su, F., Bian, X. F., Wang, Q. H. Organic geochemical characteristics of source rocks of the Linxi Formation of Well Lu D2 in Zalut area, Inner Mongolia. Geo. Bull., 2013, 8, 1307–1314 (in Chinese with English abstract).
50. Jarvie, D. M., Hill, R. J., Ruble, T. E., Pollastro, R. M. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull., 2007, 91(4), 475–499.
https://doi.org/10.1306/12190606068