ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Co-pyrolysis of biomass woodchips with Ca-rich oil shale fuel in a continuous feed reactor; pp. 208–235
PDF | https://doi.org/10.3176/oil.2024.3.04

Authors
Alejandro Lyons Ceron, Tõnu Pihu, Alar Konist
Abstract

A co-pyrolysis of woodchips and oil shale was conducted in a continuous reactor at 520 °C in a CO2 atmosphere. Experimental product yields were derived and an analysis of the liquid products was conducted, using gas chromatography, infrared spectroscopy, and physicochemical analysis. A maximum yield of liquids and gases was obtained as the share of biomass increased (43.9 and 35.1 wt%, respectively). Product characterization confirmed additive behavior in co-pyrolysis. The liquid products from co-pyrolysis blends exhibited fewer oxygenated compounds, derived from biomass, and fewer aromatic compounds, derived from oil shale. Co-pyrolysis liquids contained abundant aliphatic hydrocarbons (C6 to C11).

References

1. Mehmood, M. A., Ye, G., Luo, H., Liu, C., Malik, S., Afzal, I., Xu, J., Ahmad, M. S. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour. Technol., 2017, 228, 18–24. 
https://doi.org/10.1016/j.biortech.2016.12.096

2. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D. L. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy Rev., 2021, 139, 110691. 
https://doi.org/10.1016/j.rser.2020.110691

3. Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J., Olazar M. Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chem. Eng. J., 2014, 237, 259–267. 
https://doi.org/10.1016/j.cej.2013.10.018

4. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., Dewil, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energy, 2010, 35(1), 232–242. 
https://doi.org/10.1016/j.renene.2009.04.019

5. Wang, X., Deng, S., Tan, H., Adeosun, A., Vujanović, M., Yang, F., Duić, N. Synergetic effect of sewage sludge and biomass co-pyrolysis: a combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Convers. Manag., 2016, 118, 399–405. 
https://doi.org/10.1016/j.enconman.2016.04.014

6. Zhang, L., Xu, C. (Charles), Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag., 2010, 51(5), 969–982. 
https://doi.org/10.1016/j.enconman.2009.11.038

7. Smołka-Danielowska, D., Jabłońska, M. Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. Int. J. Environ. Sci. Technol., 2022, 19(6), 5359–5372. 
https://doi.org/10.1007/S13762-021-03506-9

8. Demirbas, M. F., Balat, M. Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Convers. Manag., 2006, 47(15–16), 2371–2381. 
https://doi.org/10.1016/j.enconman.2005.11.014

9. Singh, R. K., Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 2016, 174, 164–171. 
https://doi.org/10.1016/j.fuel.2016.01.049

10. Wang, S., Luo, Z. Pyrolysis of Biomass. De Gruyter, Berlin, Boston, 2017. 
https://doi.org/10.1515/9783110369632-001

11. Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., Ashrafur, S. M. An overview of recent developments in biomass pyrolysis technologies. Energies, 2018, 11(11), 3115. 
https://doi.org/10.3390/en11113115

12. Garcia-Perez, M., Wang, X. S., Shen, J., Rhodes, M. J., Tian, F., Lee, W. J., Wu, H., Li, C. Z. Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res., 2008, 47(6), 1846–1854. 
https://doi.org/10.1021/ie071497p

13. Igliński, B., Kujawski, W., Kiełkowska, U. Pyrolysis of waste biomass: technical and process achievements, and future development – a review. Energies, 2023, 16(4), 1829. 
https://doi.org/10.3390/en16041829

14. Wang, Q., Li, X., Wang, K., Zhu, Y., Wang, S. Commercialization and challenges for the next generation of biofuels: biomass fast pyrolysis. In: 2010 Asia-Pacific Power and Energy Engineering Conference, March 28–30, 2010, IEEE, 2010, 1–4. 
https://doi.org/10.1109/APPEEC.2010.5448437

15. Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Murthy Konda, N. V. S. N., Garcia, M. C., Wang, L., Hallett, J., Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog. Energy Combust. Sci., 2019, 71, 1–80. 
https://doi.org/10.1016/j.pecs.2018.10.006

16. EIA (U.S. Energy Information Administration). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, EIA, 2013. 

17. Foltin, J. P., Lisboa, A. C. L., de Klerk, A. Oil shale pyrolysis: conversion dependence of kinetic parameters. Energy Fuels, 2017, 31(7), 6766–6776. 
https://doi.org/10.1021/acs.energyfuels.7b00578

18. Boak, J. Shale-hosted hydrocarbons and hydraulic fracturing. In: Future Energy: Improved, Sustainable and Clean Options for Our Planet (Letcher, T. M., ed.). Elsevier, 2013, 117–143. 
https://doi.org/10.1016/B978-0-08-099424-6.00006-5

19. Speight, J. G. Origin and properties of oil shale. In: Shale Oil Production Processes. Elsevier, 2012, 1–33. 
https://doi.org/10.1016/b978-0-12-401721-4.00001-1

20. Bai, F., Sun, Y., Liu, Y., Li, Q., Guo, M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers. Manag., 2015, 97, 374–381. 
https://doi.org/10.1016/j.enconman.2015.03.007

21. Urov, K., Sumberg, A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops. Oil Shale, 1999, 16(3S), 1–64.
https://doi.org/10.3176/oil.1999.3S

22. Luik, H., Luik, L., Tiikma, L., Vink, N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. J. Anal. Appl. Pyrolysis, 2007, 79(1–2), 205–209. 
https://doi.org/10.1016/j.jaap.2006.12.003

23. Ristic, N. D., Djokic, M. R., Konist, A., Van Geem, K. M., Marin, G. B. Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography. Fuel Process. Technol., 2017, 167, 241–249. 
https://doi.org/10.1016/j.fuproc.2017.07.008

24. Kiliç, M., Pütün, A. E., Uzun, B. B., Pütün, E. Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis. Energy Convers. Manag., 2014, 78, 461–467. 
https://doi.org/10.1016/j.enconman.2013.11.002

25. Nazzal, J. M. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale. Energy Convers. Manag., 2008, 49(11), 3278–3286. 
https://doi.org/10.1016/j.enconman.2008.03.028

26. Jin, Q., Wang, X., Li, S., Mikulčić, H., Bešenić, T., Deng, S., Vujanović, M., Tan, H., Kumfer, B. M. Synergistic effects during co-pyrolysis of biomass and plastic: gas, tar, soot, char products and thermogravimetric study. J. Energy Inst., 2019, 92(1), 108–117. 
https://doi.org/10.1016/j.joei.2017.11.001

27. Ganev, E., Ivanov, B., Vaklieva-Bancheva, N., Kirilova, E., Dzhelil, Y. A multi-objective approach toward optimal design of sustainable integrated biodiesel/diesel supply chain based on first- and second-generation feedstock with solid waste use. Energies, 2021, 14(8). 
https://doi.org/10.3390/en14082261

28. Chen, B., Han, X., Tong, J., Mu, M., Jiang, X., Wang, S., Shen, J., Ye, X. Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed. Energy Convers. Manag., 2020, 205, 112356. 
https://doi.org/10.1016/j.enconman.2019.112356

29. Lyons Cerón, A., Ochieng, R., Sarker, S., Järvik, O., Konist, A. Co-pyrolysis of woody biomass and oil shale – a kinetics and modelling study. Energies, 2024, 17(5), 1055. 
https://doi.org/10.3390/en17051055

30. Krerkkaiwan, S., Fushimi, C., Tsutsumi, A., Kuchonthara, P. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal. Fuel Process. Technol., 2013, 115, 11–18. 
https://doi.org/10.1016/j.fuproc.2013.03.044

31. Chen, B., Han, X., Mu, M., Jiang, X. Studies of the co-pyrolysis of oil shale and wheat straw. Energy Fuels, 2017, 31(7), 6941–6950. 
https://doi.org/10.1021/acs.energyfuels.7b00871

32. Dai, M., Yu, Z., Fang, S., Ma, X. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Convers. Manag., 2019, 192, 1–10. 
https://doi.org/10.1016/j.enconman.2019.04.032

33. Jiang, H., Deng, S., Chen, J., Zhang, L., Zhang, M., Li, J., Li, S., Li, J. Preliminary study on copyrolysis of spent mushroom substrate as biomass and Huadian oil shale. Energy Fuels, 2016, 30(8), 6342–6349. 
https://doi.org/10.1021/acs.energyfuels.6b01085

34. Ochieng, R., Lyons Cerón, A., Konist, A., Sarker, S. Experimental and modeling studies of intermediate pyrolysis of wood in a laboratory-scale continuous feed retort reactor. Bioresour. Technol., 2023, 24, 101650. 
https://doi.org/10.1016/j.biteb.2023.101650

35. Lyons Cerón, A., Konist, A., Lees, H., Järvik, O. Effect of woody biomass gasification process conditions on the composition of the producer gas. Sustainability, 2021, 13(21), 11763. 
https://doi.org/10.3390/su132111763

36. Lyons Cerón, A., Konist, A. Co-pyrolysis of woody biomass and oil shale in a batch reactor in CO2, CO2-H2O, and Ar atmospheres. Energies, 2023, 16(7), 3145. 
https://doi.org/10.3390/en16073145

37. Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, 2012, 38, 68–94. 
https://doi.org/10.1016/j.biombioe.2011.01.048

38. Özbay, G. Catalytic pyrolysis of pine wood sawdust to produce bio-oil: effect of temperature and catalyst additives. J. Wood Chem. Technol., 2015, 35(4), 302–313. 
https://doi.org/10.1080/02773813.2014.958240

39. Yorgun, S., Yıldız, D. Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization. J. Anal. Appl. Pyrolysis, 2015, 114, 68–78. 
https://doi.org/10.1016/j.jaap.2015.05.003

40. Demirbas, A. Effect of temperature on pyrolysis products from biomass. Energy Sources A: Recovery Util. Environ. Eff., 2007, 29(4), 329–336. 
https://doi.org/10.1080/009083190965794

41. Grieco, E., Baldi, G. Analysis and modelling of wood pyrolysis. Chem. Eng. Sci., 2011, 66(4), 650–660. 
https://doi.org/10.1016/j.ces.2010.11.018

42. Pistis, A., Tugulu, C., Floris, F., Asquer, C., Scano, E. A. Fast pyrolysis of pine wood at pre-industrial scale: yields and products chemical-physical characterisation. In: Proceedings of 25th European Biomass Conference and Exhibition, June 12–15, 2017, Stockholm, Sweden. EUBCE, 2017, 1198–1204.

43. Zhou, C., Yang, W. Characterization of the products from spruce and pine sawdust pyrolysis at various temperatures. In: Proceedings of 21st European Biomass Conference and Exhibition, June 3–7, 2013, Copenhagen, Denmark. EUBCE, 2013, 968–973.

44. Ningbo, G., Baoling, L., Aimin, L., Juanjuan, L. Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. J. Anal. Appl. Pyrolysis, 2015, 114, 155–162. 
https://doi.org/10.1016/j.jaap.2015.05.011

45. Demirbas, M. F. Characterization of bio-oils from spruce wood (Picea orientalis L.) via pyrolysis. Energy Sources A: Recovery Util. Environ. Eff., 2010, 32(10), 909–916. 
https://doi.org/10.1080/15567030903059970

46. Fagernäs, L., Kuoppala, E., Tiilikkala, K., Oasmaa, A. Chemical composition of birch wood slow pyrolysis products. Energy Fuels, 2012, 26(2), 1275–1283. 
https://doi.org/10.1021/ef2018836

47. Yanik, J., Seçim, P., Karakaya, S., Tiikma, L., Luik, H., Krasulina, J., Raik, P., Palu, V. Low-temperature pyrolysis and co-pyrolysis of Göynük oil shale and terebinth berries (Turkey) in an autoclave. Oil Shale, 2011, 28(4), 469–486. 
https://doi.org/10.3176/oil.2011.4.02

48. Bozoglu, C., Karayildirim, T., Yanik, J. Utilization of products obtained from copyrolysis of oil shale and plastic. Oil Shale, 2009, 26(4), 475–490. 
https://doi.org/10.3176/oil.2009.4.04

49. Johannes, I., Tiikma, L., Luik, H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrolysis, 2013, 104, 341–352. 
https://doi.org/10.1016/j.jaap.2013.06.015

50. Li, S., Chen, X., Liu, A., Wang, L., Yu, G. Co-pyrolysis characteristic of biomass and bituminous coal. Bioresour. Technol., 2015, 179, 414–420. 
https://doi.org/10.1016/j.biortech.2014.12.025

51. Bai, J., Chen, X., Shao, J., Jia, C., Wang, Q. Study of breakage of main covalent bonds during co-pyrolysis of oil shale and alkaline lignin by TG-FTIR integrated analysis. J. Energy Inst., 2019, 92(3), 512–522. 
https://doi.org/10.1016/j.joei.2018.04.007

52. Hu, Z., Ma, X., Li, L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst., 2016, 89(3), 447–455. 
https://doi.org/10.1016/j.joei.2015.02.009

53. Bieniek, A., Jerzak, W., Magdziarz, A. Experimental studies of intermediate pyrolysis of woody and agricultural biomass in a fixed bed reactor. E3S Web Conf., 2021, 323, 1–6. 
https://doi.org/10.1051/e3sconf/202132300003

54. Yang, Y., Brammer, J. G., Mahmood, A. S. N., Hornung, A. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol., 2014, 169, 794–799. 
https://doi.org/10.1016/J.BIORTECH.2014.07.044

55. Maaten, B., Järvik, O., Pihl, O., Konist, A., Siirde, A. Oil shale pyrolysis products and the fate of sulfur. Oil Shale, 2020, 37(1), 51–69. 
https://doi.org/10.3176/oil.2020.1.03

56. Wiedemeier, D. B., Abiven, S., Hockaday, W. C., Keiluweit, M., Kleber, M., Masiello, C. A., McBeath, A. V., Nico, P. S., Pyle, L. A., Schneider, M. P. W., Smernik, R. J., Wiesenberg, G. L. B., Schmidt, M. W. I. Aromaticity and degree of aromatic condensation of char. Org. Geochem., 2015, 78, 135–143. 
https://doi.org/10.1016/j.orggeochem.2014.10.002

57. Okoroigwe, E., Li, Z., Stuecken, T., Saffron, C., Onyegegbu, S. Pyrolysis of Gmelina arborea wood for bio-oil/bio-char production: physical and chemical characterisation of products. J. Appl. Sci., 2012, 12(4), 369–374. 
https://doi.org/10.3923/jas.2012.369.374

58. Lachos-Perez, D., Martins-Vieira, J. C., Missau, J., Anshu, K., Siakpebru, O. K., Thengane, S. K., Morais, A. R. C., Tanabe, E. H., Bertuol, D. A. Review on biomass pyrolysis with a focus on bio-oil upgrading techniques. Analytica, 2023, 4(2), 182–205. 
https://doi.org/10.3390/analytica4020015

59. Tinwala, F., Mohanty, P., Parmar, S., Patel, A., Pant, K. K. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: product yields and its characterization. Bioresour. Technol., 2015, 188, 258–264. 
https://doi.org/10.1016/J.BIORTECH.2015.02.006

60. Yadykova, A. Y., Ilyin, S. O. Compatibility and rheology of bio-oil blends with light and heavy crude oils. Fuel, 2022, 314, 122761. 
https://doi.org/10.1016/J.FUEL.2021.122761

61. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of beypazari oil shale by pyrolysis. J. Anal. Appl. Pyrolysis, 2002, 64(1), 29–41. 
https://doi.org/10.1016/S0165-2370(01)00168-1

62. Mozaffari, S., Järvik, O., Baird, Z. S. Effect of N2 and CO2 on shale oil from pyrolysis of Estonian oil shale. Int. J. Coal Prep. Util., 2022, 42(10), 2908–2922. 
https://doi.org/10.1080/19392699.2021.1914025

63. Järvik, O., Oja, V. Molecular weight distributions and average molecular weights of pyrolysis oils from oil shales: literature data and measurements by size exclusion chromatography (SEC) and atmospheric solids analysis probe mass spectroscopy (ASAP MS) for oils from four different deposits. Energy Fuels, 2017, 31(1), 328–339. 
https://doi.org/10.1021/acs.energyfuels.6b02452

64. Jin, F., Liu, P., Chen, L., Hua, D., Yi, X. Study on the thermal stability of the bio-oil components by Py-GC/MS. Energy Reports, 2023, 9(4), 280–288. 
https://doi.org/10.1016/j.egyr.2023.04.001

65. Zandersons, J., Dobele, G., Jurkjane, V., Tardenaka, A., Spince, B., Rizhikovs, J., Zhurins, A. Pyrolysis and smoke formation of grey alder wood depending on the storage time and the content of extractives. J. Anal. Appl. Pyrolysis, 2009, 85(1–2), 163–170. 
https://doi.org/10.1016/j.jaap.2008.11.036

66. Zhang, L., Shen, C., Liu, R. GC–MS and FT–IR analysis of the bio-oil with addition of ethyl acetate during storage. Front. Energy Res., 2014, 2, 75175. 
https://doi.org/10.3389/fenrg.2014.00003

67. dos Santos, A. L., Lucas, A. N. L., da Mota, I. D. P., Schneider, J. K., Polidoro, A. S., Pinho, A. R., Mendes, F. L., Caramão, E. B. Quantitative GC–MS analysis of sawdust bio-oil. J. Braz. Chem. Soc., 2023, 34(11), 1581–1591. 
https://doi.org/10.21577/0103-5053.20230060

68. Patra, S. C., Vijay, M., Panda, A. K. Production and characterisation of bio-oil from Gold Mohar (Delonix regia) seed through pyrolysis process. Int. J. Ambient Energy, 2017, 38(8), 788–793. 
https://doi.org/10.1080/01430750.2016.1222958

69. Sugumaran, V., Prakash, S., Ramu, E., Arora, A. K., Bansal, V., Kagdiyal, V., Saxena, D. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC–MS) techniques. J. Chromatogr. B, 2017, 1058, 47–56. 
https://doi.org/10.1016/J.JCHROMB.2017.05.014

Back to Issue