Low-temperature circulating fluidised bed combustion (CFBC) of oil shale results in Ca-rich ashes with low pozzolanic properties, raising concerns regarding the long-term stability of ash depositories. This paper presents findings from a long-term field study investigating the mineral and chemical transformations of total CFBC ash sediments over a 15-year period. The study reveals that the pozzolanic properties of CFBC ashes are primarily influenced by the formation of Ca-Al sulphate mineral ettringite and the compactness of sediment. The compaction of ashes during deposition contributes to the development of a dense microstructure, providing uniaxial compressive strength that exceeds 20 MPa. Our findings suggest that compacted and hydrated CFBC ashes are sufficiently stable in ash deposits, holding promise as a sustainable alternative for cement-free construction materials.
1. Baqain, M., Rüstü Yörük, C., Nešumajev, D., Järvik, O., Konist, A. Ash characterisation formed under different oxy-fuel circulating fluidized bed conditions. Fuel, 2023, 338, 127244.
https://doi.org/10.1016/j.fuel.2022.127244
2. Konist, A. Investigation of fouling and corrosion of low-temperature reheater in a CFBC boiler. Fuel, 2023, 338, 127373.
https://doi.org/10.1016/j.fuel.2022.127373
3. Konist, A., Maaten, B., Loo, L., Neshumayev, D., Pihu, T. Mineral sequestration of CO2 by carbonation of Ca-rich oil shale ash in natural conditions. Oil Shale, 2016, 33(3), 248–259.
https://doi.org/10.3176/oil.2016.3.04
4. Leben, K., Mõtlep, R., Paaver, P., Konist, A., Pihu, T., Paiste, P., Heinmaa, I., Nurk, G., Anthony, E. J., Kirsimäe, K. Long-term mineral transformation of Ca-rich oil shale ash waste. Sci. Total Environ., 2019, 658, 1404–1415.
https://doi.org/10.1016/j.scitotenv.2018.12.326
5. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic trans-formation and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1–3), 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073
6. Pihu, T., Konist, A., Puura, E., Liira, M., Kirsimäe, K. Properties and environ-mental impact of oil shale ash landfills. Oil Shale, 2019, 36(2), 257–270.
https://doi.org/10.3176/oil.2019.2.01
7. Raado, L.-M., Hain, T., Liisma, E., Kuusik, R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160.
https://doi.org/10.3176/oil.2014.2.05
8. Kuusik, R., Uibu, M., Trikkel, A., Kaljuvee, T. Reuse of waste ashes formed at oil shale based power industry in Estonia. In: Waste Management and the Environment III (Popov, V., Kungolos, A. G., Brebbia, C. A., Itoh, H., eds). WIT Press, Southampton, 2006, 111–120.
https://doi.org/10.2495/WM060131
9. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda, Tallinn, 2006.
10. Konist, A., Järvik, O., Pikkor, H., Neshumayev, D., Pihu, T. Utilization of pyrolytic wastewater in oil shale fired CFBC boiler. J. Clean. Prod., 2019, 234, 487–493.
https://doi.org/10.1016/j.jclepro.2019.06.213
11. Aurela, M., Mylläri, F., Konist, A., Saarikoski, S., Olin, M., Simonen, P., Bloss, M., Neshumayev, D., Salo, L., Maasikmets, M., Sipilä, M., Dal Maso, M., Keskinen, J., Timonen, H., Rönkkö, T. Chemical and physical characterization of oil shale combustion emissions in Estonia. Atmos. Environ.: X, 2021, 12, 100139.
https://doi.org/10.1016/j.aeaoa.2021.100139
12. Paaver, P., Paiste, P., Mõtlep, R., Kirsimäe, K. Self-cementing properties and alkali activation of Enefit280 solid heat carrier retorting ash. Oil Shale, 2017, 34(3), 263–278.
https://doi.org/10.3176/oil.2017.3.05
13. Neshumayev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113.
https://doi.org/10.3176/oil.2019.2S.02
14. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93, 172–180.
https://doi.org/10.1016/j.fuel.2011.08.050
15. Raado, L.-M., Kuusik, R., Hain, T., Uibu, M., Somelar, P. Oil shale ash based stone formation – hydration, hardening dynamics and phase transformations. Oil Shale, 2014, 31(1), 91–101.
https://doi.org/10.3176/oil.2014.1.09
16. Usta, M. C., Yörük, C. R., Hain, T., Paaver, P., Snellings, R., Rozov, E., Gregor, A., Kuusik, R., Trikkel, A., Uibu, M. Evaluation of new applications of oil shale ashes in building materials. Minerals, 2020, 10(9), 765.
https://doi.org/10.3390/Min10090765
17. Paaver, P., Paiste, P., Liira, M., Kirsimäe, K. Alkali activation of Estonian Ca-rich oil shale ashes: a synthesis. Oil Shale, 2019, 36(2S), 214–225.
https://doi.org/10.3176/oil.2019.2S.11
18. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.
https://doi.org/10.3176/oil.2005.4S.04
19. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva thermal power plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
https://doi.org/10.3176/oil.2010.4.07
20. Konist, A., Valtsev, A., Loo, L., Pihu, T., Liira, M., Kirsimäe, K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel, 2015, 139, 671–677.
https://doi.org/10.1016/j.fuel.2014.09.050
21. Uibu, M., Somelar, P., Raado, L.-M., Irha, N., Hain, T., Koroljova, A., Kuusik, R. Oil shale ash based backfilling concrete – strength development, mineral transformations and leachability. Constr. Build. Mater., 2016, 102(1), 620–630.
https://doi.org/10.1016/j.conbuildmat.2015.10.197
22. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behaviour of ash in ash fields. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, May 18–21, 2009, Xi’an, China. Springer, Berlin, Heidelberg, 2010.
https://doi.org/10.1007/978-3-642-02682-9_164
23. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
https://doi.org/10.3176/oil.2012.4.08
24. Paaver, P., Paiste, P., Liira, M., Kirsimäe, K. Mechanical activation of the Ca-rich circulating fluidized bed combustion fly ash: development of an alternative binder system. Minerals, 2021, 11(1), 3.
https://doi.org/10.3390/Min11010003
25. Liira, M., Kirsimäe, K., Kuusik, R., Mõtlep, R. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel, 2009, 88(4), 712–718.
https://doi.org/10.1016/j.fuel.2008.08.012
26. Kuusik, R., Paat, A., Veskimäe, H., Uibu, M. Transformations in oil shale ash at wet deposition. Oil Shale, 2004, 21(1), 27–42.
https://doi.org/10.3176/oil.2004.1.04
27. Paaver, P., Järvik, O., Kirsimäe, K. Design of high volume CFBC fly ash based calcium sulphoaluminate type binder in mixtures with ordinary Portland cement. Materials, 2021, 14(19).
https://doi.org/10.3390/ma14195798
28. Ben Haha, M., Winnefeld, F., Pisch, A. Advances in understanding ye’elimite-rich cements. Cem. Concr. Res., 2019, 123, 105778.
https://doi.org/10.1016/j.cemconres.2019.105778
29. Glasser, F. P., Zhang, L. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res., 2001,31(12), 1881–1886.
https://doi.org/10.1016/S0008-8846(01)00649-4
30. Hargis, C. W., Telesca, A., Monteiro, P. J. M. Calcium sulfoaluminate (ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem. Concr. Res., 2014, 65, 15–20.
https://doi.org/10.1016/j.cemconres.2014.07.004
31. Juenger, M. C. G., Winnefeld, F., Provis, J. L., Ideker, J. H. Advances in alternative cementitious binders. Cem. Concr. Res., 2011, 41(12), 1232–1243.
https://doi.org/10.1016/j.cemconres.2010.11.012
32. Telesca, A., Marroccoli, M., Pace, M. L., Tomasulo, M., Valenti, G. L., Monteiro, P. J. M. A hydration study of various calcium sulfoaluminate cements. Cem. Concr. Compos., 2014, 53, 224–232.
https://doi.org/10.1016/j.cemconcomp.2014.07.002
33. Myneni, S. C. B., Traina, S. J., Logan, T. J. Ettringite solubility and geochemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K. Chem. Geol., 1998, 148(1–2), 1–19.
https://doi.org/10.1016/S0009-2541(97)00128-9
34. Leben, K., Mõtlep, R., Paaver, P., Konist, A., Pihu, T., Kirsimäe, K. Geochemical study of stable carbon and oxygen isotopes in landfilled Ca-rich oil shale ash. Est. J. Earth Sci., 2020, 69(3), 134–142.
https://doi.org/10.3176/earth.2020.09
35. Leben, K., Mõtlep, R., Konist, A., Pihu, T., Kirsimäe, K. Carbon dioxide sequestration in power plant Ca-rich ash waste deposits. Oil Shale, 2021, 38(1), 65–88.
https://doi.org/10.3176/oil.2021.1.04
36. Usta, M. C., Yörük, C. R., Uibu, M., Hain, T., Gregor, A., Trikkel, A. CO2 curing of Ca-rich fly ashes to produce cement-free building materials. Minerals, 2022, 12(5), 513.
https://doi.org/10.3390/min12050513